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Preface 

We have termed this series "Semantic Web and beyond: computing for hu- 
man experience." Ramesh Jain (co-editor of this series) and I believe that 
semantics is going to be far more pervasive than portrayed by the current vision 
of the Semantic Web. Its role and values will certainly not be limited to the 
traditional Web. Semantics will also be one of the important components of 
a continuum leading to perception and experience, albeit one that will mature 
earlier in computational context. We also believe that computation, supported 
by techniques and technologies that deal with perception, semantics, and expe- 
riences, will improve and benefit human experience. Such a computation will 
have a far broader impact than the traditional drivers of information technol- 
ogy, such as improving efficiency, lowering cost, or productivity gains. In this 
context, we expect that this series intends to offer additional books covering 
topics in perception, semantics, and experiential computing as they relate to 
improving human experience involving interactions with computing devices 
and environments. Our series intends to offer research monographs, books for 
professional audiences, as well as text books for advance graduate courses. 

This premier book in our series by Daniel Oberle is a good example of 
what we hope to cover in this series. It discusses the role of semantics in 
middleware - arguable the most important segment of the enterprise software 
market. This work demonstrates that semantics and the semantic (and Semantic 
Web) technologies have pervasive applications and uses. It is also an excellent 
training companion for active practitioners seeking to incorporate advanced and 
leading edge ontology-based approaches and technologies. It is a necessary 
preparation manual for researchers in distributed computing who see semantics 
as an important enabler for the next generation. 

Middleware systems are complex. They need to integrate and manage mul- 
tiple heterogeneous software systems. Just as semantics has been recognized 
as a key enabler of heterogeneous information integration, can semantics be 
a key enabler in integrating heterogeneous software systems? Daniel believes 
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that is indeed the case, and he goes on to provide a detailed road map on how 
semantics and Semantic Web technologies can play a significant role in cre- 
ating a middleware system and their use in managing heterogeneous software 
systems. 

The first step in the road map is modelling which centers around using on- 
tologies for specifying semantic models. This leads to the development of a 
semantic model for software components and Web services. We are introduced 
to the basics of middleware technology where technologies and design patterns 
from the past, such as message-oriented middleware or object monitors, help 
readers who are not familiar with the area to get the necessary background 
information. The discussion on ontologies achieves the same. 

The subsequent part of this book offers a detailed discussion on the different 
ontology frameworks which can be used as a modelling basis. The requirements 
for the ontology are well laid out and each ontology framework is analyzed with 
respect to the requirements. DOLCE is chosen since it meets most of the re- 
quirements. The discussion on the semantic modelling of software systems is 
particularly interesting to read. The author addresses the different modelling is- 
sues at different phases of software component design. The modelling captures 
the intricate details and differences between fundamental concepts, such as data 
and software, and continues with component profiles, policies, and many more 
aspects. The modelling also captures the API of components and proposes a 
technique to discover dependent and conflicting libraries. Also presented is a 
model to capture workflows. A discussion on how such a modelling can meet 
the requirements and the advantages of using such an approach are presented 
in detail. 

The next part provides a technical look at the different solutions. This in- 
cludes discussing each aspect of the middleware system and the techniques to 
realize them as actual systems. The requirements of such a semantic middle- 
ware are presented and the system design is discussed with that central per- 
spective. The system architecture along its different constituting components 
are discussed in detail. The application and reuse of the proposed ontology 
in the middleware system is also presented. The book ends with relating this 
approach to application management, Semantic Web Services and MDA. 

Potentially, the most lasting engineering progress in this book, in my per- 
sonal view, is that of taking semantics to the application server level. I foresee 
an emergence of Semantic Aware Networking, in which semantics not only fa- 
cilitates network functions but significantly enhances its capability by pushing 
more functions. With the industry already taking initial steps in this direction, 
such as in CISCO's Application Oriented Networking products, the next step is 
quite likely the interplay between routers and application servers with semantics 
providing a bridge. 



PREFACE xix 

While there is plenty of work related to semantics of information and even 
Web services, this effort stands out in its attention to modelling the semantics of 
software components. In this context, it is a unique offering that goes beyond 
the mainstream Semantic Web research, while demonstrating a detailed and 
pervasive use of semantics in larger software systems context. This series will 
endeavor to offer more such books and for wider audiences. 

Amit P. Sheth 
Director, Large Scale Distributed Information Systems lab 

Professor, Computer Science Department, University of Georgia 
CTO and Cofounder, Semagix, Inc. 

Athens, Georgia, 
U.S.A. 



Foreword 

Which topic in computer science has been attracting researchers and de- 
velopers from artijicial intelligence, business process modelling, conceptual 
modelling, databases, distributed systems, information systems, programming 
systems, security, sofhvare engineering, Web services and Web systems and 
engineering (and probably many others whom I forgot to mention here)? It 
is the specification, development and management of component- and service- 
oriented architectures (SOAs). 

The topic has become important to all of them. While the development of 
individual software systems is reasonably well understood and reasonably well- 
established practice (even when thousands of issues of such systems are and 
will have to be dealt with in more detail), the specification, development and 
maintenance of distributed software systems has in generalnot been understood 
to an extent that let their stakeholders gain the intended economic network ben- 
efits. On the upside, organizations that establish networking of their numerous 
distributed systems with the ones of other organizations may save costs, gain 
new customers or increase customer satisfaction. On the downside, if each mi- 
nor change or minor disruption in one software system leads to a trickle down 
effect that results in expensive reprogramming of another system, all the po- 
tential positive network effects are overshadowed by the costs for joining and 
remaining in the network. 

As the spectrum of interests indicates, the solution to this dilemma may 
require a multi-faceted approach. This book by Daniel Oberle significantly 
contributes towards this objective. Hence, the methods he proposes, revises and 
extends contribute to the plentiful, seminal research of several communities. I 
will name the ones that are most immediately affected, though I strongly believe 
that all of the above cited interest groups may benefit from building on his 
contribution: 
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Distributed Systems: Current middleware systems, such as application servers, 
are complex beasts that are very hard to tame because of the intricacies of 
distributed interactions. Hence, it has been a long-established practice to 
factorize configuration aspects of distributed interactions into correspond- 
ing declarative description files and - more recently - into XML files that 
follow the specification given by the various Web service standards. 

Unfortunately, the semantics of these files is either given by the code of the 
concrete middleware system or - probably worse -by thousands of pages 
of specification documents consisting of raw textual explanations. We all 
know what went wrong with compilers in the 1960ies when programming 
language specifications were still at that stage. 

Daniel here builds a rigorous approach towards giving the declarative de- 
scriptions of software components/Web services a well-defined meaning by 
defining ontological foundations and by showing how such foundations may 
be realized in practical, up-and-running systems. 

Artificial Intelligence - Ontologies: Though all software developers use pro- 
gramming languages, only few specialists are actually able to formally de- 
fine a programming language and develop a corresponding compiler: the 
formal foundation is not used to tutor the beginner, but to clarify the dis- 
cussion and development by experts. The same is true for ontologies that 
underly a software management approach. They need to outlive many soft- 
ware development cycles, i.e., they need to have a formal foundation, yet 
one must also tutor the domain experts how to use them. 

It is one of the successes of this work that it shows how to develop and 
use the ontological foundations of this work in a concrete software envi- 
ronment. This is done in a way that the usage of the resulting middleware 
infrastructure seems amenable to a sophisticated software developer even 
though the development of a complex foundational ontology may have to 
be left to some few specialists. 

Web Services -Semantic Web Services: The analysis of the ontologies 
Daniel develops makes evident that very few concepts actually differ when 
"upgrading" from conventional middleware to Web services. It also makes 
clear that the use of declarative specifications, such as done in Web ser- 
vices, or formal declarative specifications, such as done for Semantic Web 
Services comes with economic modelling costs that need to be justified by 
savings in other places. This lets us presume that formal specifications with 
the objective of fully automatic Web service composition and orchestration 
remain a valid research topic - but one that will find its applications in 
niches rather than in wide-spread adoption by software developers. 
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Thus, the book covers an incredible depth and breadth of approaches. Its 
value lies in revising and extending existing methods thereby providing the 
cornerstones for specifying, developing and managing distributed applications 
in the coming decades - using semantics. 

Prof. Dr. Steffen Staab 
ISWeb - Information Systems and Semantic Web 
Institute for Computer Science 
University of Koblenz-Landau 
Germany 
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PART I 

FUNDAMENTALS 



Chapter 1 

INTRODUCTION 

"There is already too much diversity of middleware for many customers and 
application developers to cope with ... the complexity of current middleware is 

untenable over the long term." 
[Bernstein, 19961 

1. Motivation 
Distributed information systems evolved in response to improvements in 

computer hardware and networks. Mainframes were the dominant computer 
architecture in the beginning of corporate IT. All three abstract layers of an in- 
formation system (i.e., presentation logic, application logic and resource man- 
agement) were blurred into a single tier running on a centralized computer. 
Once local area networks (LANs) appeared and PCs and workstations became 
powerful enough, it was possible to distribute the layers across at least two ma- 
chines, with the LAN in between. The result was the well-known clienuserver 
architecture. 

In order to implement such clientherver systems, developers were in need of 
a powerful abstraction mechanism to hide the tedious communication details. 
Thus, a new breed of software was born, viz., middleware, whose essential role is 
to manage the complexity and heterogeneity of distributed information systems. 
Middleware offers programming abstractions that hide some of the complexities 
of the underlying network and operating system. Specific middleware solutions 
are almost always accompanied by a complex software infrastructure. These 
infrastructures tend to have a large footprint. 

The magnitude of the challenge to develop and manage distributed, middle- 
ware-based applications became staggering. Companies are confronted with 
their legacy systems, hundreds to thousands of PCs in different configurations, 
several heterogeneous networks, operating systems, a myriad of server farms 
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and links to business partners - all of which tied together by middleware 
infrastructures in a frequently changing and globalized environment. Although 
middleware is mandatory to realize such distributed applications, the sheer size 
and complexity of middleware-based applications makes their management 
very difficult. 

Management of middleware can be considered as an endless loop of moni- 
toring and controlling middleware elements (e.g., software components or Web 
services). We can think of monitoring as the passive activity of retrieving in- 
formation about the middleware elements. Taking the gathered information as 
a basis, one might control, i.e., change, adapt or configure, specific aspects and 
elements of the middleware. Typical management efforts comprise: the assess- 
ing and controlling of middleware elements for their efficiency and productivity, 
their tailoring to make them operate properly, the definition and control of access 
rights and the provision of quantitative information about them. 

It is the goal of this work to facilitate the development and management of 
middleware-based applications for developers and administrators. The nov- 
elty of our approach is to use, adapt, extend and apply semantic technology 
to automate some of the management tasks. The principal idea is to model 
semantic descriptions of specific middleware elements. Our approach uses a 
powerful semantic technology as a basis: ontologies. Ontologies are similar to 
conceptual modelling techniques, such as UML or Entity Relationship Mod- 
els (ERM). However, ontologies typically feature logic-based representation 
languages with formal semantics and executable calculi. It is the executable 
calculi that allow developers and administrators to reason and query with seman- 
tic descriptions at development, deployment or run time. Therefore semantic 
descriptions of middleware elements may be queried, may foresight required 
actions, e.g., preloading of indirectly required components, or may be checked 
to avoid inconsistent .system configurations - during development as well as 
during run time. Reasoning and querying make allowances to automate - or 
at least facilitate - management tasks, such as predicting or observing how 
middleware elements interact, get into conflict and behave -to name but a few 
tasks. 

The earliest types of middleware were targeted at developing distributed 
applications from scratch and are referred to as conventional middleware. One 
of the oldest and probably best-known examples is the remote procedure call 
(RPC). RPC systems are still used as a foundation for almost all other forms 
of middleware today. The increase of computerization of business processes 
was - and still is - the main force driving the development of middleware. 
Transaction processing monitors, object brokers, object monitors and message- 
oriented middleware followed the RPC in the eighties and early nineties. 

Conventional middleware was originally intended to integrate servers that 
reside in the resource management layer. Its increasing use led to the pro- 
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liferation of distributed applications in companies. Each of the applications 
provided a higher level of abstraction and, thus, an added value. However, the 
functionality provided by these applications soon became the subject of further 
integration. Consequently, middleware for enterprise application integration 
(EAI) was created. Two prominent examples are message brokers and workflow 
management systems. 

The need to integrate applications is not limited to the boundaries of a single 
company, however. Similar advantages can be obtained from inter-enterprise 
(or business-to-business, short B2B) application integration as much as from 
intra-enterprise application integration. The latest breed of middleware was 
thus developed to enable B2B application integration. It is obvious that the 
World-Wide Web plays the predominant role as a channel to access informa- 
tion systems here. In essence, we find two types of middleware in this category. 
First, application sewers were the premier type of B2B application integra- 
tion middleware to meet the new requirements. They comprise conventional 
middleware, but incorporate the Web as key access channel to the functionality 
implemented using the middleware. Second, we find Web services, which are 
expected to facilitate the development of infrastructures that support program- 
matic application integration, dynamic B2B marketplaces and the seamless 
integration of IT infrastructures from different cooperations. 

While application servers and Web services offer many new possibilities for 
B2B application integration, they also bring about new challenges, which we 
want to address in this work. A significant aspect of application servers is 
the bundling of more and more functionality within the middleware platform. 
This is consistent with the current trend towards providing integrated support 
for many different middleware abstractions that we have witnessed in conven- 
tional middleware. Likewise, Web services middleware is almost universally 
being built as an additional tier over existing middleware platforms (mostly 
application servers), which are already too complex and cumbersome for de- 
velopers and administrators. Introducing new tiers adds further complexity and 
complicates the management tasks even more. 

2. Research Questions 
The usage of ontologies in application servers and Web services middleware 

brings about quite interesting research questions, such as the cardinal question 
below: 

Cardinal Question Can ontologies be used to facilitate the development and 
management of middleware-based applications for developers and admin- 
istrators? 

Throughout this document we divide the Cardinal Question into three Main 
Questions, which are aligned with the parts of the book. We discuss middle- 
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ware in general and have a closer look at application servers and Web services to 
learn about their complexity (Chapter 2). After introducing ontologies (Chap- 
ter 3), Chapter 4 considers these problems as a basis and proposes semantic 
management to automate some of the management tasks. The usage of se- 
mantic management does not come for free, however, as it relies on semantic 
descriptions of middleware elements. Modelling efforts, i.e., manual modelling 
or obtaining and integrating existing sources, have to be expended to arrive at 
semantic descriptions. As the modelling efforts should be kept as small as 
possible, we encounter the first Main Question: 

Main Question I How to find a good trade-off between modelling and man- 
agement efforts? 

In Chapter 4 we approach the trade-off point. We follow the strategy that 
we first identify promising use cases for exploiting the semantic descriptions. 
Taking the use cases as a basis, we clarify who benefits from what kind of 
semantic descriptions, as well as when and for what purposes. The use cases 
are distinguished between application servers and Web services and embedded 
in respective scenarios. The scenarios pose additional requirements that have 
to be met by the system design later on. Chapter 4 answers the questions: 

Question 1.1 Who uses semantic descriptions? 

Question 1.2 What are the semantic descriptions used for? 

Question 1.3 When are the semantic descriptions used? 

Question 1.4 Which aspects should be formalized by our ontology? 

The answers to the Question 1.4 state a set of modelling requirements for 
deciding which aspects our ontology should formalize, that is, which aspects 
are relevant in order to realize semantic management of middleware. The 
modelling requirements serve as an input to Part 11, which is concerned with 
answering the second Main Question: 

Main Question I1 How to build a suitable management ontology? 

Before modelling a management ontology from scratch, it is desirable to 
check if there are existing ontologies that we might reuse for our purpose. 
Thus, Chapter 5 analyzes existing ontologies for application servers and Web 
services, respectively. The conclusion is that their problematic aspects are 
typical for common ontologies. Their loose design and conceptual ambigu- 
ity prevents us from simply reusing them. Instead, we expect that a generic, 
high-quality ontology might serve us well as a modelling basis. The usage of 
such foundational ontologies fosters superior design and high quality of our 
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management ontology. Based on specific ontological choices that are suitable 
in our case, Chapter 6 analyzes existing foundational ontologies and indicates 
an appropriate one. 

Our goal is to save modelling efforts and to facilitate the reuse of our manage- 
ment ontology in any specific application server and Web service application. 
Hence, Chapter 7 discusses the design of a management ontology that captures 
a predefined set of semantic descriptions, which can be specialized to any spe- 
cific platform. Consequently, the Main Question I1 can be subdivided into three 
questions: 

Question 11.1 Can an existing ontology be reused for our purposes? 

Question 11.2 How to ensure high quality? 

Question 11.3 How to decrease modelling efforts and enable reuse? 

The formalization of an appropriate management ontology in Part I1 is the 
first step towards semantic management. The ontology provides a coherent 
formal model that allows the weaving together of separated aspects. The next 
step is to propose a way to realize semantic management, i.e., to automate some 
management tasks by reasoning and querying based on the ontology. Therefore, 
Part I11 is concerned with answering the third Main Question: 

Main Question I11 How to realize semantic management of middleware? 

In order to arrive at a suitable system design, Chapter 8 reflects on the fol- 
lowing issues: First, we have to elaborate on a suitable target platform where 
the semantic technology can be integrated, e.g., enterprise application manage- 
ment tools, software IDE's, workflow engines or application servers. Second, 
we have to think about who or what will provide semantic descriptions. The 
number of semantic descriptions that are provided manually by the software 
developer must be as few as possible, because software developers will not 
be very willing to carry out additional work. Third, we have to consider the 
specific requirements of the scenarios introduced in Chapter 4. 

In Chapter 9 we implement a prototype of the derived system design by ap- 
plying an existing ontology tool suite in an existing application server. Finally, 
Chapter 10 discusses the steps necessary to reuse our management ontology in 
this concrete implementation. Thus, the Main Question I11 can be subdivided 
into: 

Question 111.1 What is a suitable target platform? 

Question 111.2 Who provides semantic descriptions? 

Question 111.3 How to implement semantic management? 
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Question 111.4 How to reuse the ontology? 

Part IV consolidates the related works of parts I to I11 into Chapter 1 1 followed 
by a conclusion and an outlook (Chapter 12). Each chapter starts with a short 
summary of the previous chapter and discusses the goals, as well as the what 
and the why of the current one. We give a list of publications if parts of the 
chapter have been published before. 

3. Contributions 
The novelty of our approach is to use, adapt, extend and apply semantic tech- 

nology to automate some of the management tasks of application server and 
Web services middleware. Such middleware solutions are very complex soft- 
ware products that are hard to tame because of the elaborately complex detail 
of building distributed systems. So far, their functionalities have mostly been 
developed and managed with the help of administration tools and correspond- 
ing configuration files, recently in XML. Though this constitutes a very flexible 
way of developing and administrating a distributed application, the disadvan- 
tage is that the conceptual model underlying the different configurations is only 
implicit. Hence, its bits and pieces are difficult to retrieve, survey, check for va- 
lidity and maintain. To remedy such problems, we contribute an ontology-based 
approach to support the development and administration of middleware-based 
applications. The ontology captures properties of, relationships between and 
behaviors of the components and services that are required for development 
and administration purposes. The ontology is an explicit conceptual model 
with formal logic-based semantics. Therefore, its descriptions may be queried, 
may foresight required actions, or may be checked to avoid inconsistent system 
configurations. Thus, the ontology-based approach retains the original flexibil- 
ity in configuring and running the middleware, but it adds new capabilities for 
the developer and user of the system. The proposed scheme is prototypically 
implemented in an open-source application server. 

Our approach is one of the first that acknowledges and explicitly builds on the 
observation that there is a trade-off between expending efforts for management 
and expending efforts for semantic modelling. At the one end, the objective 
of full automation by semantic modelling will need very fine-grained, detailed 
modelling of all aspects of middleware elements - essentially everything that 
an intelligent human agent must know for managing the middleware. Thus, 
modelling efforts skyrocket at the end of fine-grained modelling. At the other 
end, where modelling is very coarse and little modelling facilitates management, 
management efforts of distributed systems soar. In this work, we approach the 
trade-off by identifying promising use cases. The use cases demonstrate that 
some management tasks can be facilitated by a justifiable amount of semantic 
modelling. In addition, the modelling requirements of the use cases give us clear 
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indications of what concepts a suitable management ontology must contain. 
Although this seems quite a natural way of proceeding, it is rarely done in 
related research fields such as "Semantic Web Services," for instance. The 
approaches presented there usually aim at full automation and miss deriving 
modelling requirements for their respective ontologies. 

Another contribution concerns the typical shortcomings of commonly and 
often naively built ontologies. Such ontologies suffer from conceptual ambigu- 
ity, poor axiomatization, loose design and narrow scope. They are often reduced 
to simple taxonomies and leave open many interpretations of their concepts and 
associations. We eliminate such shortcomings by adopting the advanced the- 
ory of Guarino and by introducing a new classification of ontologies in order to 
clarify their different usages. We carefully choose an appropriate foundational 
ontology on the basis of specific ontological choices. The foundational ontol- 
ogy is used as a modelling basis for the creation of a concisely axiomatized 
management ontology that may be reused in different middleware platforms. 
The extensive axiomatization of the management ontology and, thus, its refer- 
ence characteristic, allows clarifying the meanings of overloaded terms such as 
"software component" or "Web service," allows the distinction among differ- 
ent kinds of entities, such as physical and information objects, and provides a 
superior design. 



Chapter 2 

MIDDLEWARE 

This chapter introduces the reader to the notion of middleware. The essential 
role of middleware is to manage the complexity and heterogeneity of distributed 
infrastructures. On the one hand, middleware offers programming abstractions 
that hide some of the complexities of building a distributed application. On the 
other hand, there is a complex software infrastructure that implements these 
abstractions. With very few exceptions, this infrastructure tends to have a large 
footprint. The trend today is toward increasing complexity, as products try to 
provide more and more sophisticated programming abstractions and incorporate 
additional layers. 

We advance chronologically and discuss briefly the earliest types of middle- 
ware targeted at distributed application development in Section 1 .  They are also 
referred to as conventional middleware and comprise the remote procedure call 
(RPC), transaction processing monitors, object brokers, object monitors and 
message-oriented middleware. 

Conventional middleware is intended to facilitate the development of dis- 
tributed applications from scratch. With the proliferation of distributed appli- 
cations in companies, there arose the need for the integration of such appli- 
cations as opposed the development from scratch. That triggered further the 
evolution of middleware leading to message brokers and workflow management 
systems to support enterprise application integration. Both types are discussed 
in Section 2. 

The need to integrate applications is not limited to the boundaries of a 
single company, however. Similar advantages can be obtained from inter- 
enterprise (or business-to-business, short B2B) application integration as from 
intra-enterprise application integration. Therefore, the latest breed of middle- 
ware was developed to enable B2B integration. Application servers and Web 
services belong in this category. We have a closer look at both in Section 
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3. In order to limit the scope and hence the size of the problem we focus on 
application servers and Web services and neglect newer kinds of middleware. 
Examples for newer kinds are grid and peer-to-peer middleware [Junginger and 
Lee, 20041, which are also not yet mature enough. 

A closer look at application servers and Web services reveals that both types 
are suffering from increasing complexity. Application servers bundle more 
and more functionality. Web services are almost universally being built as 
additional tiers over existing middleware platforms, e.g., application servers, 
which are already too complex and cumbersome. The complexity of developing 
and managing distributed applications with application servers is countered 
by the usage of deployment descriptors. Deployment descriptors are usually 
XML-files that reduce the amount of coding by specifying orthogonal issues 
in an declarative and application-independent way. In a similar vain, the Web 
service community is currently developing a set of standards, denoted WS*, to 
manage aspects, such as coordination or composition. 

Although deployment descriptors and WS* descriptions constitute a very 
flexible way of developing and administrating a distributed application, we 
demonstrate by example that there are still many management efforts to be 
expended by developers and administrators. The reason is that the conceptual 
model underlying the different descriptions is only implicit. Hence, its bits and 
pieces are difficult to retrieve, survey, check for validity and maintain. This ob- 
servation serves as input to Chapter 4 where we propose semantic management 
with the help of explicit conceptual models, i.e., ontologies (cf. Chapter 3). 

Parts of this chapter provide an overview of middleware based on the signif- 
icant book of [Alonso et a]., 20041. There are also parts based on [Mahmoud, 
20041, as well as [Bernstein, 1996, Campbell et al., 19991. The example of 
deployment descriptors is taken from [Oberle et al., 2005~1, the one of WS* 
descriptors from [Oberle et al., 2005al. 

1 Middleware for Distributed Application Development 
The essential role of middleware is to manage the complexity and hetero- 

geneity of distributed infrastructures, thereby providing a simpler programming 
environment for distributed application developers. It is therefore useful to de- 
fine middleware as any software layer that is placed above the infrastructure 
of a distributed system - the network and operating system - and below the 
application layer [Campbell et al., 19991. 

Middleware platforms appear in many guises and it is sometimes difficult to 
identify their commonalities. Before addressing concrete types of middleware, 
it is worthwhile to spend some time clarifying the general aspects underlying 
all middleware platforms. 

On the one hand, middleware offers programming abstractions that hide 
some of the complexities of building a distributed application. Instead of the 



Middleware 13 

programmer having to deal with every aspect of a distributed application, it is 
the middleware that takes care of some of them. Through these programming 
abstractions, the developer has access to functionality that otherwise would 
have to be implemented from scratch. 

On the other hand, there is a complex software infrastructure that implements 
the abstractions mentioned above. With very few exceptions, this infrastructure 
tends to have a large footprint. The trend today is toward increasing complexity, 
as products try to provide more and more sophisticated programming abstrac- 
tions and to incorporate additional layers. This makes middleware platforms 
very complex software systems [Alonso et al., 20041. 

This section discusses the middleware used to construct distributed systems 
from scratch, i.e., middleware for distributed application development (also 
called conventional middleware). We further discuss middleware for enterprise 
application integration and business-to-business (B2B) integration in Sections 2 
and 3, respectively. During our discussion we keep an eye on the paradigm shifts 
regarding the types and granularity of software building blocks because they 
influenced the evolution of middleware. As depicted in Figure 2.1, software 
building blocks evolved from procedures to objects, workfows, components 
and finally to services. 

Use 
------ timeline 
--+ basis for - .@- subsumed by 

Brokers 

Software 
Building 
Blocks 

> 

I 

Figure 2.1. Types of middleware and historical overview. 
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TP Monitors In the early days of corporate IT, computer architectures were 
mainframe-based and interaction took place through terminals that only 
displayed the information as prepared by the mainframe. 

Transaction processing monitors (TP Monitors), also called transaction pro- 
cessing middleware or simply transaction middleware, were initially de- 
signed to allow mainframes to support as many concurrent users as possible. 
As part of this task, TP monitors also needed to deal with multi-threading 
and data consistency, thereby extending core functionality with the concept 
of transactions. They are the oldest and best-known form of middleware. 
Today, distributed transaction monitors are prevailing to enable transactions 
spanning several isolated database management systems. [Gray and Reuter, 
1993, Tai, 20041 

IBM CICS' was the first commercial product offering transaction protected 
distributed computing on an IBM mainframe. Nowadays, every major soft- 
ware vendor offers its own product, e.g., Microsoft Transaction Server 
(MTS)~ or BEA ~ u x e d o . ~  Sun's Java Transaction API (JTA)~ specifies 
standard Java interfaces between transaction monitors and involved parties. 

RPC-based systems When the decentralization of corporate IT took place as 
a consequence of the introduction of the PC, functionality began to be dis- 
tributed across a few servers. In order to realize distributed applications, 
developers were in need of a powerful abstraction mechanism to hide the 
tedious communication details. 

The remote procedure call (RPC) responded to this need and was originally 
presented in [Birrell and Nelson, 19841 as a way to transparently call a 
procedure located on another machine. RPC established first the notion of a 
client (the program that calls a remote procedure) and a server (the program 
that implements the remote procedure being invoked). It also introduced 
many concepts still widely used today: the interface definition language 
(IDL), name and directory services, dynamic binding and service interfaces. 
Today, RPC systems are used as a foundation for almost all other forms of 
middleware, including Web services middleware (cf. Section 3.2). 

Several RPC middleware infrastructures were developed that supported a 
wealth of functionality, e.g., the Distributed Computing Environment (DCE) 
provided by the Open Software Foundation (OSF) [Houston, 19961. 

'Customer Information and Control System, cf. http: //www. ibm. com/software/htp/cics/ 
2http: //msdn.microsoft . codlibrary 
3http: //www. beasys . com/products/tuxedo 
4http: //java. sun. com/products/jta/ 
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Object Brokers RPC was designed and developed at a time when the pre- 
dominant programming languages were procedural languages, i.e., software 
building blocks were procedures. With the advent of object-oriented ( 0 0 )  
languages, the object became the software building block, encapsulating 
data and behavior. 

Platforms were developed to support the invocation of remote objects, thereby 
leading to object brokers. These platforms were more advanced in their spec- 
ification than most RPC systems, but they did not significantly differ from 
them in terms of implementation. In practice, most of them used RPC as 
the underlying mechanism to implement remote object calls. [Alonso et al., 
20041 

The most popular class of object brokers are those based on the Common 
Object Request Broker Architecture (CORBA),' defined and standardized 
by the Object Management Group (OMG). 

Object Monitors When object brokers tried to specify and standardize the 
functionality of middleware platforms, it soon became apparent that much 
of this functionality was already available from TP Monitors. At the same 
time, TP monitors, initially developed for procedural languages, had to be 
extended to cope with object-oriented languages. 

The result of these two trends was the convergence between TP monitors 
and object brokers that resulted in hybrid systems called object monitors. 
Object monitors are, for the most part, TP monitors extended with object- 
oriented interfaces. Vendors found it easier to make a TP monitor look like a 
standard-compliant object broker than to implement object brokers with all 
the features of a TP monitor and the required performance. [Alonso et al., 
20041 

Examples of object monitors are Iona's O ~ ~ ~ X O T M . ~  The aforementioned 
TP monitors, MTS from Microsoft and Tuxedo from BEA, can be classified 
as object monitors as well. 

Message-oriented Middleware (MOM) The previous types of middleware 
are based on synchronous method invocation, where a client application 
invokes a method offered by a specific service provider. When the service 
provider has completed its job, it returns the response to the client. This 
rather "closely coupled" and "blocking" interoperability soon became too 
limiting for software developers. 

5http: //www , omg . org/corba/ 
6http: //www. iona. com/products/orbix. htm 
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The answer to this limit was message-oriented middleware, enabling clients 
and servers7 to communicate via messages, i.e., structured data sets typically 
characterized by a type and name-value-pairs. This kind of communication 
is made possible by message queues controlled by the MOM. Queues can be 
shared among multiple applications; recipients can decide when to process 
messages and do not have to listen continuously; priorities can be assigned, 
to name but a few advantages of this approach. [Curry, 2004bl 

TIBETX from Tibco has been a popular product throughout the nineties.* 
Implementations of the Java Message Service (JMS)~ can be regarded as 
message oriented middleware. Also, CORBA provides its own messaging 
service. 

2. Middleware for Enterprise Application Integration 
The types of middleware discussed so far were originally intended to develop 

applications from scratch or to integrate database or file servers. The increasing 
use of such middleware led to the proliferation of distributed applications in 
companies. Each of the applications provided a higher level of abstraction, and, 
thus an added value. However, the functionality provided by these applications 
soon became the subject of further integration. The advantage of application 
integration is a higher level of abstraction that can be used to hide complex ap- 
plication and integration logic. The disadvantage is that now integration is not 
limited to database or file servers, but also to applications themselves. Unfortu- 
nately, while for databases there has been a significant effort to standardize the 
interfaces of specific types of databases, the same cannot be said of applications. 
As long as the integration of applications takes place within a single middleware 
platform, no significant problem should appear. Once the problem became the 
integration of applications provided by different middleware platforms, there 
was almost no infrastructure available that could help reduce the heterogeneity 
and standardize the interfaces, as well as the interactions between the systems. 

The need for such enterprise application integration (EAI) further triggered 
the evolution of middleware, extending its capabilities to cope with applica- 
tion integration, as opposed to the development of new application logic. Such 
extensions involve significant changes in the way middleware is used. This 
section briefly discusses message brokers as the most versatile platform for 
integration and workflow management systems as the tools to make the inte- 
gration logic explicit. Note that both types of middleware can also be used to 
develop distributed applications anew instead of integrating existing ones. 

' ~ o t e  that the distinction between clients and service providers becomes purely conceptual in the case of 
MOM. From the perspective of the middleware, all objects look alike. 
8ht tp :  //www. t i bco .  com 
'http:  / / java .  sun. com/products/jms/ 
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Message Brokers Message-oriented middleware (MOM) is rather static with 
regard to the selection of the queues to which the messages are delivered. 
For a generic EAI setting however, we need flexible and dynamic means for 
communication between arbitrary heterogeneous applications. 

In response to those needs, message brokers extend MOM with the capability 
of routing, filtering and even processing the messages. In addition, most 
message brokers provide adapters that mask the heterogeneity and make 
it possible to access all kinds of applications with the same programming 
model and data exchange format. The combination of these two factors is 
seen as the key to supporting EAI. [Alonso et al., 20041 

Some of the best-known message brokers include IBM WebSphere MQ,'O 
MSMQ by ~icrosof t"  or BEA WebLogic 1ntegration.12 

Workflow Management Systems (WfMS) While message brokers are suc- 
cessful in providing flexible communication among heterogenous applica- 
tions, the integration logic is still hard-coded and, thus, difficult to maintain. 

Workflow management systems tackle the other side of the application in- 
tegration problem: that of facilitating the definition and maintenance of the 
integration logic. Business processes are formally defined as a workflow 
and executed by a workflow engine. Workflows are seen as software build- 
ing blocks for "programming in the large" because they compose coarse- 
grained activities and applications that can last hours. In addition, workflows 
compose large software modules, which are typically entire applications. 
[van der Aalst and van Hee, 2002, Georgakopoulos et al., 19951 

Examples of leading commercial workflow systems include WebSphere MQ 
~ o r k f l o w ' ~  by IBM and Microsoft BizTalk ~rchestrat ion. '~ 

3. Middleware for B2B Application Integration 
So far we have studied middleware for creating and integrating distributed 

applications within the boundaries of a company. The need to integrate, how- 
ever, is not limited to the systems within a single company. Similar advantages 
can be obtained from inter-enterprise (or business-to-business, short B2B) ap- 
plication integration as from intra-enterprise application integration. 

With the Web being pervasively available, it goes without saying that some 
of the same technologies that enabled information sharing on the Web also form 
the basis for this kind of B2B application integration. In particular, HTTP is the 

I0http: //www. ibm. com/software/integration/wmq/ 
"http: //www.microsoft . com/msmq 
12http: //www. bea. com/products/weblogic/integration 
I3http: //www . ibm. com/webspheremq/workf low 
I4http: //msdn.microsoft . com/library/ 
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basic protocol for applications to interact, and XML documents are the standard 
way to exchange information. 

The need for B2B application integration triggered the evolution of mid- 
dleware. Application servers and Web services provided the solution to the 
new requirements. Because this work focuses on application servers and Web 
services, we discuss them in more detail in the following sections. Note that 
both types of middleware can, of course, be used to develop distributed applica- 
tions anew and to integrate applications within the boundaries of an enterprise. 
Most of the work on workflow management of the early nineties migrated to 
Web-based infrastructure in the late nineties to provide technical capabilities 
required for B2B applications. 

3.1 Application Servers 
The increasing use of the Web as a channel to access information systems 

forced conventional middleware platforms to provide support for Web access. 
This support is typically associated with application servers. Also, they foster 
component-based software engineering and introduce the use of deployment 
descriptors, all of which are discussed below. 

The core functionality of an application server can be described by examining 
the major competing alternatives: application servers based on Sun's J ~ E E ' ~  
and Microsoft's M NET.'^ Both are similar in terms of their functionality. How- 
ever, we focus on J2EE in this section without loss of generality. Basically, 
J2EE is defined by a set of API specifications that is implemented by vendors. 
Examples are IBM websphereI7 or the open-source application server JBOSS. '~ 

Components and Frameworks 
With the increasing complexity in system requirements and the tight de- 

velopment budget constraints, the process of programming applications from 
scratch is becoming less feasible. As we have seen throughout this chapter, 
the granularity of software building blocks ever increased and also influenced 
the evolution of middleware. Constructing applications from a collection of 
reusable components and frameworks is emerging as a popular approach to 
software development. This way of constructing applications can be seen as a 
new paradigm proposing that software should be built by gluing prefabricated 
components together as in the field of electronics or mechanics. 

A (software) component is a functional discrete block of logic. Components 
can be full applications or encapsulated functionality that can be used as part of 

I 5 ~ a v a  2 Enterprise Edition, cf. http: //java. sun. com/j2ee/ 
I6http: //www.microsof t . com/net/ 
I7http: //WWW. ibm. com/sof tware/websphere/ 
IXhttp: //www. jboss . org 
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a larger application, enabling the construction of applications using components 
as software building blocks. Components have a number of benefits as they 
simplify application development and maintenance, allowing systems to be 
more adaptive and to respond rapidly to changing requirements. Reusable 
components are designed to encompass a reusable block of software, logic or 
functionality. 

If components are analogous to building blocks, frameworks can be seen 
as the cement that holds them together. Frameworks are a collection of inter- 
faces and interaction protocols that define how components interact with each 
other and the framework itself. In essence, frameworks allow components to 
be plugged into them. Examples of component frameworks include Enter- 
prise JavaBeans (EJB)'~ in the case of J2EE and the Component Object Model 
(coM)~' from Microsoft. Frameworks are most often integrated in application 
servers. [Curry, 2004al 

Application Servers as "Web-enabled" Middleware and Frameworks 
Application servers incorporate the Web as a key access channel to the 

functionality implemented using conventional middleware, leading to "Web- 
enabled" middleware. Incorporating the Web as an access channel has several 
important implications. The most significant one is that the presentation logic 
of the application acquires a much more relevant role than in conventional mid- 
dleware. This is a direct consequence of how HTTP and the Web work, where 
all forms of information exchange take place through documents. Preparing, 
dynamically generating, and managing these documents constitute main re- 
quirements to be met by an application server. An application server intends to 
support multiple types of clients including mobile phones, applications, such as 
those encountered in conventional middleware, Web services clients, i.e., ap- 
plications that interact with the server through standard Web services protocols 
(cf. Section 3.2) and Web browsers. Web browsers are by far the most common 
type of clients. They interact with the application server via its Web server and 
receive statically or dynamically generated HTML pages. 

Figure 2.2 depicts the API's of the presentation logic layer in the case of 
J2EE. Dynamic pages are generated by ~ervlets ,~ '  viz., Java code that handles 
HTTP requests and generally responds with HTML to be rendered by a request- 
ing browser. A closely related technology is the JavaServer Pages ( J S P ) . ~ ~  JSP 
is based on servlets, but is more convenient by including Java-code in an HTML 
page. Support for parsing and transforming XML documents independent of 

19http: //java. sun. com/products/ejb/ 
20http: //www .microsof t . com/com/ 
2'http: // java. sun. con/products/servlet 
22http: //java. sun. com/products/jsp 
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a specific XML processing implementation is provided by Java API for XML 
Processing ( JAXP) .~~  ~ a v a ~ a i l ~ ~  provides platform-independent and protocol- 
independent means to build mail and messaging applications. Furthermore, 
the Java Authentication and Authorization Service ( J A A S ) ~ ~  enables develop- 
ers to authenticate users and enforce access controls upon those users in their 
applications. By abstracting from the complex underlying authentication and 
authorization mechanisms, JAAS minimizes the risk of creating security vul- 
nerabilities in application code. 

Servlets fa\JavaServer Pages (JSP) 1 
Java API for XML 1 Javahlail 1 
Processing (JAXP) 

1 Java Authentication and Authorization Service 1 
(JAAS) 4 

Enterprise Java Java Transaction 
Beans (EJB) 

Java Naming and Java Message Directory Interface 
Service (JMS) 

Java 2 Connector 
Connectivity (JDBC) Architecture (J2CA) 

presentation 
logic 
layer 

application 
logic 
layer 

access to 
resource layer 

Figure 2.2. J2EE API's divided into layers. [Alonso et al., 20041 

At the application layer, application servers conceptually resemble conven- 
tional middleware. The functionality provided is similar to that of TP monitors, 
CORBA and message brokers. However, component-based software engineer- 
ing is typically fostered by application servers, which therefore provide a cor- 
responding framework. 

The middle section of Figure 2.2 depicts the API's of the application logic 
layer in the case of J2EE. We can find conventional middleware, such as JTA 
and JMS, together with directory services accessible via JNDI (cf. Section 

23http: //java. sun. com/xml/jaxp/ 
"http: //java. sun. com/products/javamail/ 
25http://java.sun.com/products/jaas/ 
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1). The framework for software components in the form of the Enterprise 
JavaBeans (EJB) container is a basic part of J2EE-based application servers. 
Specific EJB components are deployed in this container and contain the bulk 
of application logic. Some application servers use the recent Java Management 
Extensions ( J M X ) ~ ~  technology to put EJB container, directory services and 
the like in coarser grained components, called managed beans (short MBeans). 
In contrast to EJB, JMX provides its own framework for such managed beans. 
The difference is that MBeans can be deployed, undeployed and monitored at 
run time. They also support interface evolution by a looser coupling. 

Finally, J2EE addresses the problem of connecting to the resource layer. Two 
standards are leveraged in this case: (i) Java Database Connectivity ( J D B C ) ~ ~  
that enables developers to access almost any relational database, and (ii) the 
J2EE Connector Architecture ( J ~ c A ) ~ '  that is a generalization of JDBC in that 
it defines how to build arbitrary resource adapters. 

As the complexity of J2EE shows, a significant aspect of application servers 
is the bundling of more and more functionality within the middleware plat- 
form. This is consistent with the trend toward providing integrated support for 
many different middleware abstractions that we have witnessed in conventional 
middleware. In fact, as software vendors continue to extend their middleware 
offerings and package them in many different ways, it becomes hard even to 
distinguish what is inside an application server and what is not. In many cases, 
the name originally given to the application server (e.g., IBM WebSphere) has 
been progressively used to label every middleware product offered by a com- 
pany. For example, IBM messaging and workflow platforms are now marketed 
under the name WebSphere MQ. 

Deployment Descriptors 
Application servers try to tame the increasing complexity of their bundled 

functionality by managing orthogonal issues in an application independent way. 
They introduce vertical services, e.g., load balancing, pooling, caching, trans- 
actions, session management, user rights and persistence, that span all layers. 
Thus, the responsibility is shifted from the development to the deployment 
process, i.e., "the process whereby software is installed into an operational 
environment" according to the J2EE glossary. 

XML files are used to describe how components and applications should be 
deployed and how vertical services should be configured. Such deployment 
descriptors29 direct deployment tools to deploy a component, an application 

26http: //java. sun. com/products/JavaManagement/ 
27http: //java. sun. com/products/jdbc 
28http: //java. sun. com/j2ee/connector/ 
*"~EE deployment descriptor, http: //java. sun. com/j2ee/j2ee- 1-4-fr-spec. pdf 
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or a vertical service with specific options and describe specific configuration 
requirements that a deployer must resolve. 

While it is always a good idea to reduce the amount of source code that has 
to be written, the deployment process can be quite tricky in itself. Deploy- 
ment tools merely act as an input mask, which generates the specific XML 
syntax for the user. This is definitely a nice feature; however, the developer 
must fully understand the quite complicated concepts that lie behind the options 
for the transactional behavior, for instance, and juggle all of them at the same 
time. The current deployment tools do not help to avoid or even actively repair 
configurations that may cause harmful system behavior. Even worse, this prob- 
lem is duplicated, as there is a plethora of deployment descriptors for different 
kinds of components (servlets, EJBs, MBeans) and vertical services (security, 
transactions, etc.). 

We here present a case of how tricky the deployment process can become. 
It is the interesting case of indirect permissions due to context switches (cf. 
Figure 2.3). As an example, consider the anonymous user who accesses a Web 
shop by the HTTP basic authentication. The script on this page, say a servlet, 
might connect to the CustomerEnt ityBean, an EJB, which in turn accesses the 
Customer table in the database. We assume that the database is only accessible 
by dbuser.  Therefore, the EJB performs an explicit context switch (which is 
frequently described as the run-as paradigm). The call succeeds, because the 
user information will be propagated and the call will also be executed using the 
dbuser's credentials. This case is definitely not a bug; however, it remains a 
pure manual and tedious task for the administrator of the application server to 
keep track of such indirect permissions. [Oberle et al., 2005~1 

( orr3tQ 
Customer 

anonymous CustomerEntityBean -? 
dbuser 

Figure 2.3. Example of indirect permission. [Oberle et al., 2005~1 

In this example, the administrator needs to analyze two different deployment 
descriptors, as well as the source code to discover the situation outlined above. 
First, the deployment descriptor of the servlet container (web. xml) states that 
only authenticated users may access the WebShopServlet: 
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Example 2.1 (web. xml) 

Second, the WebShopServlet itself accesses the CustomerEntityBean. The 
servlet's doGet () method serves the incoming HTTP requests. In our case it 
queries user account information out of the Customer table by means of the 
bean in order to display it to the user. After retrieving a handle to the bean via 
the Home interface, the getCustomerName 0 method of the bean is invoked 
by the servlet. 

Example 2.2 (WebShopServlet . j ava) 
public class WebShopServlet extends HttpServlet ( 
public void doGet(HttpServ1etRequest request, 
HttpServletResponse response) 

< 
. . . 
//get customer info via CustomerEntityBean 
CustomerObject cObject = cHome.create() 
out.println(c0bject.getCustomerName()) 

Third, the deployment descriptor of the CustomerEntityBean, called ej b- 
-jar. xml, states that the bean performs a context switch via the <run-as- 
-specif ied-identity> tag. It thus accesses thedatabase table withdbuser's 
credentials: 
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Example 2.3 (e j b- j ar . xml) 
. . . 
<e jb- j ar> 
<enterprise-beans> 
cent ity> 
cejb-name>CustomerEntityBean</ejb-name> 
~ejb-class>edu.unika.aifb.CustomerEntityBe~~/ejb-class~ 
. . .  
<security-identity> 
<run-as-specified-identity> 
<role-name>dbuser</role-name> 
</run-as-specified-identity> 

</security-identity> 
</entity> 

</enterprise-beans) 
</e jb- jar> 

Assessing such situations for any user, any EJB and any database table be- 
comes an impossible task for developers and administrators. Rather, it is de- 
sirable to query a system from different perspectives, e.g., "Are there any users 
with indirect permission to resources? And i f  yes, what are those resources?" 
or "Are there any indirect permissions on the Customer table? And ifyes, who 
are the users?' Such a system requires the explication of the conceptual model 
underlying the different descriptions. Each deployment descriptor introduces 
its own conceptual model implicitly in the corresponding XML-DTD. There- 
fore, it is difficult to arrive at conclusions that are a result of an integration of 
such descriptors. Consequently, Chapter 4 proposes the usage of ontologies to 
support developers and administrators in these tasks. 

As we introduce in Chapter 3, ontologies are a means to formally specify 
a coherent conceptual model with logic-based semantics. The modelling of 
the computational domain has to be done rigorously, because we encounter 
fundamental ontological questions: What is the difference between the users in 
the operating system, in the database system and within the application server's 
realm (where users are calledprincipals)? Are there any conceptual differences 
except their placement in a different realm? Also, we might be interested in 
the relationship between a user in an information system and the corresponding 
natural person. To infer the total of access rights granted for a natural person 
who might have several user accounts in and across information systems, might 
reveal further security holes. 
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3.2 Web Services 

The types of middleware discussed so far are all based on tightly-coupled 
software building blocks (procedures, objects, workflows and components). 
That means interfaces between the different software building blocks of an 
application are closely interrelated in function and form, thus making them 
brittle when any form of change is required to parts or the whole application. 

The need for B2B applications to adapt to changing environments is a key 
reason that made loosely-coupled systems attractive. In this section we explain 
how Web services came about and how they may meet the new requirements. 
First, one has to understand the paradigm of service-oriented architectures, 
which factorizes the functionality in loosely-coupled services. A second aspect 
is the way that Web services redesign the conventional middleware protocols. 
Finally, standardization plays a major role, which led to a set of specifications 
of different Web services aspects, labelled WS*. 

Service-Oriented Architectures (SOA) 

Today, businesses have to adopt quickly to changing environments, such as 
changing policies, business strengths, business focus, partnerships or industry 
standing. Businesses that are able to act flexibly in relation to their environment 
where change occurs as required, are called "on demand" businesses. They 
triggered the need for loosely-coupled systems in order to become more agile 
with respect to changing environments. 

The SOA paradigm is the answer to this and other needs. The functionality 
of a distributed system is split into services instead of tightly-coupled objects 
or components. Sewices are loosely-coupled, autonomous and independent 
software building blocks. In order to work on a global scale, standards have 
to be defined for service invocation, description, discovery, coordination and 
composition. 

SOA-based systems do not exclude the possibility that individual services 
can themselves be built with object-oriented design. It allows objects within 
the system and is as such object-based, but not as a whole object-oriented. 
The difference is that many aspects that were hard-coded before have to be 
specified dynamically and declaratively. One needs to specify how the overall 
application performs its workflow between services. The workflow may include 
services not just between departments, but even with other external partners. 
Policies have to be defined as to how relationships between services should 
transpire. All this has to work in an environment of trust and reliability, which 
is given implicitly when business partners know each other and agree on terms 
beforehand. [IBM developerworks, 2004al 
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Web Services as Middleware for SOA-based Systems 
The Web-based middleware for SOA-based systems is called Web services. 

Web services subsume a set of protocols and XML-languages for interface 
description, invocation, discovery and composition of services. The minimalist 
Web services middleware is comprised of SOAP (Simple Object-based Access 
Protocol [Gudgin et al., 2003]), the standard for the invocation, and WSDL 
(Web Service Description Language [Christensen et al., 2001]), the standard 
for the interface description. Further standards for discovery, coordination and 
composition are being developed at the time of writing, as discussed below.30 

The evolutionary nature of Web services presents them as extensions to con- 
ventional middleware that provides a set of simple interfaces for interactions 
across the Internet. These extensions make Web-based integration possible at 
least in simple scenarios (such as EAI or closed communities of business part- 
ners). SOAP and WSDL constitute yet another tier on the internal middleware 
of an organizational unit (cf. ~ i ~ u r e 2 . 4 ) .  

External Middleware 

Transaction Monitor, Directory Service, Workflow Engine, ... 

I Internet 

Internal Middleware I 

Transaction Monitor 
Directory Service 
Workflow Engine 
... 

Service Service @Q 
... 

Transaction Monitor 
Directory Service 
Workflow Engine 
... 

Internal Middleware 1 
Organizational Unit, Organizational Unit, 

Figure 2.4. Internal vs. external middleware. [Alonso et al., 20041 

Two organizational units are able to perform application integration if they 
both agree on using SOAP and WSDL, even if they use different internal mid- 
dleware. For example, Web services might draw from components residing in 
application servers (internal middleware) distributed over different organiza- 
tional units and heterogeneous platforms. Application servers are an obvious 

30~essage-oriented middleware is sometimes considered as middleware for SOA-based systems, too. In 
fact, it defines similar concepts, but lacks the standardization necessary to realize SOA-based systems on a 
global scale. We discuss these matters in the next section. 



Middleware 27 

target to support such a "wrapping" by SOAP and WSDL, as they provide the 
basic infrastructure (Web server, XML parsers, etc.). In most cases, the de- 
veloper is only required to mark a certain method with meta-tags in the source 
code. The application server cares for automatically generating the WSDL 
description and handling the SOAP messages. 

The new tiers Web services add to the already overly complex internal mid- 
dleware lead to significant performance overhead and increase the complexity of 
developing, tuning, maintaining, and evolving multi-tier systems. Translation 
to and from XML, tunnelling of invocations through SOAP, clients embedded 
in Web servers and many of the technologies typical of Web services do not 
come for free. Furthermore, Web services will introduce additional, external 
middleware, thus adding extra complexity. 

The revolutionary view sees Web services as radically changing the way 
integration is achieved. The assumption seems to be that once SOAP and WSDL 
are used, then Web services will facilitate the development of infrastructures 
that support programmatic application integration, dynamic B2B marketplaces 
and the seamless integration of IT infrastructures from different c ~ o ~ e r a t i o n s . ~ '  
However, the autonomous nature of such SOA-based systems demands the 
redesign of the middleware protocols to work in a loosely-coupled fashion and 
across organizational units. 

Internal middleware protocols were designed based on assumptions that do 
not hold in cross-organizational interactions. For example, they assumed a 
central transaction coordinator and the possibility for this coordinator to lock 
resources indefinitely. Lack of trust and confidentiality issues often make a 
case against a central coordinator and, therefore, middleware protocols must 
now be redesigned to work in a fully distributed fashion and must be extended 
to allow more flexibility in terms of locking resources. Similar arguments can 
be made for all interaction and coordination protocols and, in general, for many 
of the other properties provided by conventional and internal middleware, such 
as reliability and guaranteed delivery. What was then achieved by a centralized 
platform must now be redesigned in terms of protocols that can work in a 
decentralized setting and across trust domains. One example of such "external" 
middleware is UDDI (Universal Description Discovery & Integration [UDDI 
Coalition, 2000]), allowing the discovery of Web services. 

In order to facilitate application integration with Web services on a global 
scale, the external Web services middleware must rely on standards. These 
standards shape the current Web services landscape to a large extent. We have 
introduced SOAP, WSDL, as well as UDDI so far. We introduce additional 
ones in the next subsection. 

3 1 ~ o d a y ,  Web services are not as revolutionary as one may think. They are mostly used in the evolutionary 
way for conventional EAI. 
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WS* 
Having an SOA and redefining the middleware protocols is not sufficient to 

address loosely-coupled and dynamic application integration on a global scale, 
unless the language and protocols become standardized and widely adopted. 
Consortia, such as the Organization for the Advancement of Structured Infor- 
mation Standards (OASIS)~~ or the World Wide Web Consortium ( w ~ c ) , ~ ~  
attempt to standardize all the different aspects beyond invocation (SOAP), de- 
scription (WSDL) and discovery (UDDI). The commitment for standardization 
does not necessarily mean that there will be one specification for each aspect, 
however. Below, we give an incomplete overview of the aspects that are cur- 
rently being specified. Altogether, they form an inscrutable set and are labelled 
WS*. [Alonso et al., 20041 

WS-Coordination The primary goal of this specification is to create a frame- 
work for supporting coordination protocols. In this regard, it is intended as 
a meta-specification that will govern specifications that implement concrete 
forms of coordination protocols. [Cabrera et al., 20031 

WS-Transaction WS-Transaction is an example of a concrete coordination 
protocol specified by means of WS-Coordination. WS-Transaction is split 
into the WS-AtomicTransaction protocol for short duration transactions and 
WS-BusinessActivity to enable existing workflow systems to wrap their 
proprietary mechanisms and interoperate across trust boundaries. [Cabrera 
et al., 20041 

WS-BPEL The Business Process Execution Language for Web Services (WS- 
BPEL) is the de facto standard for specifying service composition. It also 
allows specifying coordination between Web services, thus acting as an 
alternative to WS-Coordination. [Andrews et al., 20051 

WS-Security WS-Security is an extension to SOAP for end-to-end applic- 
ation-level security that is otherwise ignored by underlying protocols, such 
as HTTPS. It adds to SOAP the mechanisms of signatures and encryption. 
[Atkinson et al., 20021 

WS-Policy is a proposal for a framework through which Web services can 
express their requirements, capabilities and preferences (commonly referred 
to as "policies") to each other in an interoperable manner. It defines a set of 
generic constructs for defining and grouping policy assertions. [Bajaj et al., 
2004, Alonso et al., 20041 

32http:  / /www. oasis-open. org 
33http:  //www. w 3 .  org 



Middleware 29 

WS-Trust The Web Services Trust Language (WS-Trust) uses the secure mes- 
saging mechanisms of WS-Security to define additional primitives and ex- 
tensions for security token exchange to enable the issuance and dissemi- 
nation of credentials within different trust domains. [BEA Systems et al., 
20041 

Other aspects and specifications include WS-Addressing, WS-Attachments, 
WS-Eventing, WS-Federation, WS-Inspection, WS-Manageability, WS-Meta- 
DataExchange, WS-Notification, WS-Routing, and many more. An overview 
is given in [IBM developerworks, 2004bl. 

The advantages of WS* are multiple and have already benefited some in- 
dustrial cases. Similar to deployment descriptors in application servers, WS* 
descriptions manage orthogonal aspects in an application independent way. 
XML-files declaratively describe how Web services should be deployed and 
configured. Thus, WS* descriptions are exchangeable and developers may use 
different implementations for the same Web service description. The disadvan- 
tages of WS*, however, are also visible; even though the different standards are 
complementary, they must overlap and one may produce models composed of 
different WS* descriptions, which are inconsistent, but do not easily reveal their 
inconsistencies. The reason is that there is no coherent formal model of WS* 
and, thus, it is impossible to ask for conclusions that come from integrating 
several WS* descriptions. Thus, discovering such Web Service management 
problems or asking for other kinds of conclusions that derive from the integration 
of WS* descriptions remains a purely manual task of the software developers 
accompanied by little or no formal machinery. 

As an example for a trivial conclusion derived from both a WS-BPEL and 
WS-Policy description, consider the following case. Let's return to Example 
2.1 on page 23 of a web shop and assume we have realized it with internal 
and external Web services composed and managed by a WS-BPEL engine. 
After the submission of an order, we have to check the customer's credit card 
for validity, depending on the credit card type (VISA, Mastercard, etc.). We 
assume that credit card providers offer this functionality via Web services. 
The corresponding WS-BPEL process checkAccount thus invokes one of the 
provider's Web services, depending on the customer's credit card. Example 2.4 
shows a snippet of the WS-BPEL process definition. 

Example 2.4 (WS-BPEL) 
. . .  
(process name=" checkAc~ount~~> 
<switch . . .  > 
<case condition=''getVariableData( 'card')='VISA)"> 
<invoke partnerLink="toVISAU 
p~rtType='~visa: CCPortType" 
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Suppose now that the Web service of one credit card provider, say Master- 
Card, only accepts authenticated invocations conforming to Kerberos or X509. 
It states such policies in a corresponding WS-Policy document, such as the one 
sketched in Example 2.5. The invocation will fail unless the developer ensures 
that the policies are met. The developer has to check the policies manually at 
development time or has to implement this functionality to react to policies at 
run time, assuming that no policy matching engine is in place. 

Example 2.5 (WS-Policy) 

As we may recognize from this small example, it is desirable to support the 
developer with unambiguous specifications and formal machinery to arrive at 
such conclusions automatically. This is particularly helpful when we think of 
more sophisticated examples where we have large indirect process cascades or 
additional WS* descriptors to consider. However, it remains a manual task for 
the developer to discover and assess such situations. The reason is that there is 
no coherent conceptual model underlying the WS* descriptions - very similar 
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to the case of deployment descriptors in application servers. As a consequence, 
Chapter 4 proposes the usage of ontologies in Web services middleware to 
support developers and administrators in performing such tasks. 

Ontologies are a means to formally specify conceptual models with logic- 
based semantics. The domain of Web services demands a rigorous modelling 
because we are confronted with fundamental ontological questions. What is the 
difference between a policy of a Web Service and an access right on a software 
component? Are they the same? Can workJows of Web services be modelled 
such as the invocation chain of software components? Such questions call for a 
concise and fundamental introduction of ontologies, which is given in Chapter 

4. Summary 
In this chapter we have discussed the evolution of middleware providing a 

brief overview for the reader. We have advanced from the earliest types of 
middleware targeted at distributed application development. With the prolifer- 
ation of distributed applications in companies there arose the need for enterprise 
application integration. That triggered further the evolution of middleware re- 
sulting in middleware for enterprise application integration. Finally, we have 
had a closer look at the current state-of-the-art, viz., middleware for business-to- 
business (B2B) application integration. Application servers and Web services 
belong in this category. Both offer a wealth of functionalities for realizing 
business-to-business application integration via the Web. Application servers 
bundle more and more functionality and Web services are almost universally 
being built as additional layers over existing middleware platforms, which are 
already too complex and cumbersome. The complexity iscountered by the us- 
age of deployment descriptors that reduce the amount of coding by specifying 
orthogonal issues in an application independent way. In a similar vein, the Web 
service community is currently developing a set of standards, WS*, to manage 
aspects such as coordination or composition. 

Though deployment descriptors and WS* descriptions constitute a very flex- 
ible way of developing and administrating a distributed application, we have 
demonstrated that developers and administrators still need to expend signifi- 
cant efforts. The reason is that the conceptual model underlying the different 
descriptions is only implicit. Hence, its bits and pieces are difficult to retrieve, 
survey and check for validity and maintain. It remains a manual task to arrive at 
conclusions that are the result of combining such descriptions. Hence, Chapter 
3 introduces the reader to ontologies as a means to formally specify conceptual 
models with logic-based semantics. We have also demonstrated that the do- 
main of software components and Web services demands a careful and rigorous 
ontological modelling. 
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ONTOLOGIES 

This chapter introduces the reader to ontologies as a means to explicitly spec- 
ify conceptual models with logic-based semantics. Section 1 briefly discusses 
the original meaning of ontology as a philosophical discipline and continues 
by analyzing the definition of an ontology as used in the Artificial Intelligence 
and Database communities. In the latter case, we refer to an information object 
and engineering artifact defined by [Gruber, 19951 as an "explicit specification 
of a conceptualization." Subsequent sections explain how one can grasp the 
formal notion of a conceptualization and clarify the role of the explicit specifi- 
cation, i.e., the ontology itself. We also have a look at ontology quality criteria 
and a suitable representation formalism. The ontology quality criteria are later 
used to assess if existing ontologies can be reused for our purposes. Further- 
more, the criteria allow us to motivate that a representation formalism with large 
expressiveness constitutes one possibility to increase ontology quality. 

Section 2 elicits how one can classify ontologies according to the dimen- 
sions purpose, expressiveness and specijicity. The classification acts as a guide 
throughout the document. It allows clarifying the different types of ontologies 
and the roles they play. In this chapter we take a closer look at foundational 
ontologies. They can be used as a starting point for building core and domain 
ontologies. In fact, Part I1 exploits a foundational ontology as a modelling basis 
for a management ontology. Its reference characteristics, extensive axiomatiza- 
tion and domain-independence are particularly suitable for this purpose. Using 
a foundational ontology as modelling basis means relating the concepts and 
associations of an ontology to the basic categories of human cognition inves- 
tigated by philosophy, linguistics and psychology. This prompts the ontology 
engineer to sharpen his notions with respect to the distinctions made in the 
foundational ontology. Because the domain of software components and Web 
services demands a careful and rigorous modelling, foundational ontologies 
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are a good basis to start from. We argue that the resulting core and domain 
ontologies have a better design by applying ontology design patterns captured 
by the foundational ontology. 

A well-designed foundational ontology is very specific about the ontologi- 
cal choices to which it commits. Hence, by reusing a foundational ontology 
for modelling a universe of discourse, the ontology engineer is also prompted 
to decide whether the choices are suitable. This decision is often neglected 
or unconsciously made, leading to confusion later on. We discuss important 
ontological choices, which are also called ontology meta-criteria, in Section 4. 
In Part I1 we choose an appropriate foundational ontology on the basis of the 
ontological choices. 

Although we'acknowledge the original definition by [Gruber, 19951, we 
follow the work and theory of Guarino as depicted in his papers [Guarino 
et al., 1994, Guarino and Giaretta, 1995, Guarino, 1998, Guarino and Welty, 
20021. The notion of ontology quality and the ontological choices are taken 
from Wonderweb deliverables [Borgo et al., 2002,Masolo et al., 2002,Masolo 
et a]., 20031, the formalism on quantified modal logic from [Schmitt, 20011. 
The way to classify ontologies has not been published before (apart from [Oberle 
et al., 2004bl -an internal project report) and was created in cooperation with 
Aldo Gangemi. We also cite parts of [Varzi and Vieu, 20041. 

1 Definition 
The word "ontology" is used with different meanings in different communi- 

ties. We distinguish between Ontology (uncountable reading and capital initial) 
and an ontology (countable reading and lowercase initial) in the remainder of 
this book. 

In the first case, we refer to a philosophical discipline, namely the branch of 
philosophy which deals with the nature and the organization of reality. Aristotle 
dealt with this subject in his ~ e t a ~ h ~ s i c s '  and defined ontology2 as the science 
of being. Unlike the special sciences, each of which investigates a class of 
beings and their determinations, Ontology regards all the species "... of being 
qua being and attributes which belong to it qua being ..." [Aristotle, 350 BC]. 
In this sense Ontology tries to answer the question: What is being? or, in 

 he first books of Aristotle's treatises, known collectively as "Organon:' deal with the nature of the world, 
i.e., physics. Metaphysics denotes the subjects dealt with in the rest of the books - among them Ontology. 
The Ancient Greek preposition pcr& translates to the spatial "behind," i.e., what is meant by Metaphysics are 
the books next to the ones dealing with physics on the shelf. Hence, philosophers often equate Metaphysics 
and Ontology. 
20ntology is a Greek composite word put together by sb 6v and 6 A6yoc. 6v is the irregular active present 
participle of cTvat, English "to be," whose complete stem is revealed in its genitive roS 6vroc. 6 A6yoc is 
used by the Ancient Greek with at least five basic meanings, in this case it can be translated as "science." 
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a meaningful reformulation: What are the features common to all beings? 
[Guarino and Giaretta, 19951 

In the second case, we refer to an information object and engineering artifact 
as the most prevalent use in the Artificial Intelligence and Database communi- 
ties. Ontologies are a means to formally model a specific universe of discourse. 
The ontology engineer analyzes relevant entities3 and classifies them into con- 
cepts and  instance^.^ The backbone of an ontology consists of a concept hi- 
erarchy, i.e., a taxonomy. Associations define relationships between concepts 
and can be instantiated accordingly. In our domain of middleware, "software 
component" and "enterprise bean" might be relevant concepts, where the first 
is the superconcept of the latter. "Depends on" can be considered a crucial 
association holding between software components. A concrete enterprise bean 
running on a computer would then be an instance of its corresponding concept. 

In essence, ontologies are similar to existing conceptual modelling tech- 
niques, e.g., the Entity Relationship Model [Chen, 19761 or UML [Booch et al., 
19981.~ However, ontologies differ from existing methods and technologies in 
the following way: (i) the primary goal of ontologies is to enable agreement 
on the meaning of specific vocabulary terms and, thus, to facilitate informa- 
tion integration across individual applications; (ii) ontologies are formalized 
in logic-based representation languages. Their semantics are thus specified in 
an unambiguous way. (iii) The representation languages come with executable 
calculi enabling querying and reasoning at run time. 

Gruber originally defined this notion of ontology as an "explicit specification 
of a conceptualization" [Gruber, 19951. The following sections elaborate on 
the notion of conceptualization because it is hard to understand and is often 
confused with an ontology itself in common literature. 

1.1 What is a Conceptualization? 
[Gruber, 19951 refers to the notion of a conceptualization according to 

[Genesereth and Nilsson, 19871 who claim: "A body of formally represented 
knowledge is based on a conceptualization: the objects, concepts, and other 
entities that are assumed to exist in some area of interest and the relationships 
that hold among them. A conceptualization is an abstract, simplified view of 
the world that we wish to represent for some purpose. Every knowledge base, 

3 ~ r o m  Latin "ens; entis," the active present participle of "esse," derived from the Greek dvw, English "to 
be." Entity denotes the most general being, and, thus, subsumes subjects, objects, processes, ideas, etc. 
4 ~ m i t h  made us aware that the notion of "concept" is quite ambiguous [Smith, 20041. Therefore, we find 
another distinction in common literature. It is the distinction between universals and particulars that can be 
informally understood by taking the relation of instantiation as a primitive: particulars are entities which have 
no instances; universals are entities that can have instances. In this case, associations are usually considered 
as universals. 

fact, we visualize ontologies by means of UML class diagrams throughout the document. 
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knowledge-based system, or knowledge-level agent is committed to some con- 
ceptualization, explicitly or implicitly." Formally, they define conceptualization 
as follows: 

Definition 3.1 (Conceptualization according to Genesereth) 
A conceptualization according to Genesereth is a tuple ( D ,  R) where 

D is the universe 

R is a set of relations on D 

Genesereth and Nilsson's notion of conceptualization refers to ordinary 
mathematical relations on a set D (which we always denote by the letter D 
without further mention), i.e., extensional relations. These relations reflect a 
specific world such as the one depicted in Example 3.1. 

Example 3.1 
Let us consider an example of sofnvare components and their dependen- 
cies. A possible conceptualization of this universe of discourse might 
be ( D ,  R) with D = {scl ,  sc2, scg, scq) and R = { S C ,  d).  The ex- 
tensions of both relations might be S C  = {scl ,  sc2, scg, sc4) and d  = 
{ ( s c ~ ,  sc2), (scl ,  scg), (sc2, scg)), i.e., S C  comprises elements of the universe 
which are software components and d  formalizes their dependency relations. 
The world is depicted in Figure 3.1. 

Figure 3.1. A specific world with software components and their dependencies. 

Guarino made us aware that this notion of conceptualization is quite prob- 
lematic, however. In [Guarino and Giaretta, 19951 he explains that another 
world has to be considered a different conceptualization according to this def- 
inition. In our universe of software components (Example 3.1), every specific 
dependency graph would be another conceptualization. 

Example 3.2 
Let us consider the following alteration of Example 3.1 with D' = D and R' = 
{ S C ,  dl) where d' = d U { (sc l ,  scq)). It is obvious that ( D ,  R) # (Dl ,  R') 
and, thus, we have two different conceptualizations according to Genesereth. 
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The problem is that the relations of R reflect a specific world. However, we 
need to focus on the meaning of those relations, independently of a world: for 
instance, the meaning of the d relation lies in the way it refers to certain pairs 
of software components according to their dependency. Therefore, we need 
to speak of intensional or conceptual relations. A standard way to represent 
intensions (and therefore conceptual relations) is to see them as functions from 
possible worlds into sets [Guarino, 19981. 

Definition 3.2 (Conceptual Relation) 
A conceptual relation pn of arity n is a total finction pn : W -+ 2Dn from 
the set U! which we call the set of possible worlds, into the set of all n-ary 
(extensional) relations on D. 

We can consider our Examples 3.1 and 3.2 as two different worlds wl and 
w2. Conceptual relations of S C  and d look like follows: SC1  maps ev- 
ery possible world to {scl ,  sc2, sc3, sc4) because software components can- 
not cease to be software components in any world we can think of (cf. the 
notion of rigidity in [Guarino and Welty, 20021). d2 maps to a specific depen- 
dency graph between the four software components. In Example 3.1 we have 
d2 ( w l )  = { (sc l ,  sc2), ( s c ~ ,  sc3), (sc2, sc3)) and in Example 3.2 d2 (w2)  = 
{ (sc l ,  S C ~ ) ,  ( sc l ,  sc3), (sc2, sc3), (scl ,  sc4)). Having the notion of conceptual 
relations at hand, we are able to understand Guarino's notion of a conceptual- 
ization: 

Definition 3.3 (Conceptualization according to Guarino) 
A conceptualization according to Guarino is a triple C = ( D ,  W ,  92) with 

D the universe 

W a set of possible worlds 

R a set of conceptual relations 

1.2 What is an Ontology? 
Having clarified the notion of conceptualization, we can now draw our atten- 

tion to the definition of an ontology as an "explicit specification of a conceptu- 
alization." The explicit specification is achieved by a logical theory, i.e., a set 
of logical axioms, expressed in a logical language L. Hence, an ontology can 
be regarded as a logical theory that accounts for the intended meaning of the 
vocabulary V of L. The vocabulary of a logical language usually consists of a 
set of constant, function and relation (predicate) symbols. We do not need func- 
tion symbols for our purposes and limit our attention to constant and relation 
symbols. 
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This section explains how to grasp the intended meaning of a vocabulary 
following [Guarino, 19981. We start with the logical language L, which is 
typically a variant of first-order logic. For the sake of brevity, we omit an 
extensive introduction of first-order logic and only give the usual definition of 
a first-order structureY6 as well as the notion of satisfiability and model, which 
are required in the following definitions [Schoning, 20001. 

Definition 3.4 (First-Order Structure, Model, Logical Theory) 
A First-Order Structure M for a logical language L with vocabulary V is a 
tuple M = ( S ,  I )  with 

S = ( D ,  R) being a Conceptualization according to Genesereth 

I being an interpretation function I : V --+ D U R that maps vocabulary 
symbols of V to elements of the universe D or extensional relations of R. 

A logical theory F, consisting of a set of axioms, is satisfiable by afirst-order 
structure M if all of its axioms are true. In this case, M is called a model of 
F, written M + F. 

After introducing the language L we now clarify what is meant by the in- 
tended meaning of vocabulary of a language L. The key to this is the notion 
of ontological commitment. We say that a logical language L commits to a 
conceptualization C by means of an ontological commitment. Formally we 
write: 

Definition 3.5 (Ontological Commitment) 
An Ontological Commitment K of a logical language L with vocabulary V is 
a tuple K = ( C  , Z )  with 

C = ( D ,  W, R) being a conceptualization according to Guarino and 

Z being a total function Z : V --+ D U R mapping vocabulary symbols of 
V to elements of the universe D or conceptual relations of R. 

The definition above is quite simple: We extend the usual mapping of vo- 
cabulary symbols to extensional relations in Definition 3.4 by a mapping to 
conceptual relations. We do so because we have learned that extensional rela- 
tions are not suitable for expressing conceptualizations in the previous section. 
Coming back to our Example 3.1, we would commit the relation symbols S C  
and d to the conceptual relations SC1  and d2, respectively. 

6 ~ e  prefer to use the term "first-order structure" over "model" or "interpretation." The latter two are often 
used in common literature, but suffer from heavy overloading. 
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The notion of ontological commitment is the link between a conceptualiza- 
tion C ,  which is language independent in the first place, and an ontology, i.e., 
a logical theory expressed in L accounting for K. The next step is to formalize 
"accounting for" suitably, i.e., the logical theory should be designed so that 
its models approximate the conceptualization as tightly as possible. In other 
words, we need a notion of compatibility between the logical theory and the 
conceptualization: 

Definition 3.6 (Compatibility: Logical Theory - Ontolog. Commitment) 
A model M = ( S ,  I ) ,  with S = ( D ,  R) a conceptualization according to 
Genesereth, of a logical theory expressed in L is compatible with an ontological 
commitment K = ( C , Z ) ,  with C = ( D ,  W, R )  a conceptualization according 
to Guarino, iff 

1 there exists w E W so that for all r E R there exists at least one p E V 
with r = Z(p)  ( w )  

2 for all constant symbols c  E V we have I (c )  = Z(c)  

3 for all relation symbols p  E V there exists at least one p E R with Z(p)  = p 

4 there exists w E W so that for all relation symbols p  E V there exists at 
least one p E R with I (p)  = p(w) 

The set IK(L) of all models of L that are compatible with K is called the set 
of intended models of L according to K. 

Condition 1 states that the extensional relations of R have to be equal to 
a conceptual relation in a specific world. In Example 3.1, we have r = 
{ s c ~ ,  S C ~ ,  sc3, sc4} = SC1(wl)  and r = {(scl ,  S C ~ ) ,  ( s q ,  sc3), ( s c ~ ,  sc3)) = 
d2(w1). Condition 2 is simple and just requires that the mapping of constant 
symbols to elements of the universe is identical. Example 3.1 does not intro- 
duce any constant symbols. In condition 3 we demand that the interpretation 
Z,  defined in our ontological commitment, maps every relation symbol p to a 
conceptual relation p. In the example, the relation symbols S C  and d have 
to be mapped to the conceptual relations SC1 and d2, respectively. Finally, 
condition 4 demands that the interpretations of relation symbols are elements 
of a corresponding conceptual relation in a specific world. In Example 3.1, 
I ( d )  has to be equal to d2(wl)  = {(sc l ,  sc2), (scl ,  sc3), (sc2, S C ~ ) ) .  

With the notion of compatibility at hand, we can now clarify the role of an 
ontology, considered as a logical theory designed to account for the intended 
meaning of a vocabulary V of L. With all of our clarifications, we arrive at the 
following definition: 
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Definition 3.7 (Ontology) 
Given a language L with ontological commitment K ,  an ontology 0 for L is 
a logical theory designed so that the set of its models approximates as best as 
possible the set of compatible, i.e., intended, models of L according to K (c$ 
Figure 3.2) 

all possible structures of L 

set of models that satisfy 
the ontology (logical theory) 

intended models I,(L) 

Figure 3.2. Intended models vs. models of the ontology. [Guarino, 19981 

In general, it is not easy (nor always convenient) to find the right logical 
theory mainly because of cognitive reasons. Everybody conceives the world 
differently, applies individual meanings to concepts and changes his or her mind 
over time with respect to the meanings. Therefore, an ontology admits other 
models besides the intended ones. An ontology can "specify" a conceptualiza- 
tion only in a very indirect way, since ( i )  it can only approximate the intended 
models; ( i i )  such a set of intended models is only a weak characterization of a 
conceptualization. The reason for ( i )  and (ii) is that there is no way to reconstruct 
the ontological commitment of a language from a set of its intended models, 
since a model does not necessarily reflect a specific world. In fact, since the 
relevant relations considered may not be enough to completely characterize a 
world, a model may actually describe a situation common to many worlds. This 
means that it is impossible to reconstruct the correspondence between worlds 
and extensional relations established by the underlying conceptualization. 

Therefore, we shall say that an ontology 0 for a language L approximates 
a conceptualization C if there exists an ontological commitment K so that the 
intended models of L according to K are included in the models of 0. That 
leads us to the notion of ontology quality [Borgo et al., 20021:~ 

 h he notions of precision and completeness can be compared to the measures of precision and recall of 
intended models known from information retrieval. Accuracy can be understood as the product of precision 
and recall but calculated on worlds, i.e., specific situations, instead of intended models. 
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Definition 3.8 (Ontology Quality) 
An ontology O1 is more precise than an ontology 0 2  if the models of Ol 
cover fewer unintended models. This is the case when the axiomatization of 
O1 is richer than that of 0 2 .  In an ideal case, the models of the ontology 
and the intended models are identical. 

An ontology O1 is more complete than an ontology 0 2  ifthe models of Ol 
cover more intended models. This is the case when O1 adopts more relevant 
conceptual relations in its vocabulary than 0 2 .  

An ontology O1 is more accurate than an ontology 0 2  if the models of Ol 
exclude more unintended situations. A precise and complete ontology might 
not be enough to fully characterize a world. The reason is that the intended 
models actually describe a situation common to many worlds. 

A typical case for an ontology not being precise enough is depicted in Figure 
3.2, where the models of the ontology comprise also unintended models. In our 
running example, we do not specify our understanding of software component 
(SC) in the form of axioms. Software component is a very broad concept that 
leaves open a multitude of interpretations ranging from "part of an application" 
to very specific ones, such as enterprise bean. Hence, our ontology comprises 
also unindended models. The ontology depicted in Figure 3.2 is also not com- 
plete enough because it does not cover all intended models. In our running 
example, we are not complete enough if we understand software component 
as "part of an application" because "part" and "application" are missing in the 
vocabulary. Finally, a way to make an ontology more accurate is to enrich 
the universe of the underlying conceptualization. In our running example, we 
do not specify whether software components can also depend on Web services 
or vice versa simply because our universe does not contain enough relevant 
entities. 

The criteria are used in Part I1 to assess if the quality of existing ontologies 
suffices for our purposes. A way to increase ontology quality is to adopt a 
modal logic, which allows one to express constraints across worlds. We discuss 
a suitable modal logic in the next section. 

1.3 A Suitable Representation Formalism 
When choosing a suitable representation formalism for ontologies, one al- 

ways encounters the dilemma between expressiveness and decidability. On the 
one hand, the representation formalism should enable us to be as precise as 
possible. On the other hand, we need a decidable and efficient calculus for our 
language to allow reasoning at run time. 

In this section, our intention is to approximate the intended models of a 
conceptualization as closely as possible, so we choose a rich representation for- 
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malism. Quantified modal logic has proven to be suitable because it introduces 
primitives that allow us to quantify over worlds. The reader may note that this 
choice does not exclude using a computable and efficient, yet less expressive, 
language later on at run time, e.g., a description logic. We elaborate on this 
issue in Section 2. 

Quantified modal logic is based on first-order logic, but introduces a set 
W ,  which is called the set of possible worlds, and an accessibility relation A 
between worlds. Both are defined by means of a Kripke structure. The modal 
operators 0 and 0 allow us to quantify over these worlds. OF is interpreted as 
"F is true in all worlds" and OF as "there exists one world in which F is true." 

Definition 3.9 (Quantified Modal Logic) 
A Kripke structure K  is a triple K  = (W,  A,  M )  with 

w a set W  called the set of possible worlds 

w A  W  x W  a binary relation on W (called the accessibility relation or 
alternativeness relation) 

w ajrst-order structure Mw = (S ,  I )  that can be different in any w  E W  

IfK is a Kripke Structure, w  E W  and F  a modal formula, then we dejne 
( K ,  w )  + F, i.e., F  is true in world w  of Kripke Structure K, recursively as 
follows: 

( K ,  w )  I= r (c l ,  ..., ck)  iff Mw k r (c l ,  ..., ck)  for all relation symbols r  and 
constant symbols ci with 1 5 i 5 k 

H (K ,  w )  + OF ifffor all wl with A(w,  w l )  we have ( K ,  w l )  + F  

w ( K ,  w) OF iff there exists wl with A(w,  w l )  so that ( K ,  w l )  + F  

w ( K ,  w )  + VxF ( x )  iff for all d  E D holds ( K ,  w )  + F (d)  

w ( K ,  w )  + 3xF ( x )  iff there exists d E D with ( K ,  w )  k F  (d)  

We want to give A the meaning of an ontological compatibility relation. 
Sets of worlds must be mutually inaccessible if they do not share the same 
assumptions. Coming back to our running example, a set of worlds in which d  
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is given another meaning, e.g., location in time, would not be compatible with 
the worlds in which we considered it as a dependency relation between software 
components. 

To capture such intuitions, A must be an equivalence relation, i.e., reflexive, 
transitive and symmetric. If A is an equivalence relation it partitions worlds 
into equivalence classes, which are mutually inaccessible. In Figure 3.3, class 
[Wl] denotes all worlds in which d is interpreted as dependency relation; [W2] 
denotes all worlds in which d is interpreted as location in time, for instance. 

- Accessability relation A 

Figure 3.3. The equivalence relation A partitions the set of possible worlds W into equivalence 
classes [Wl] and [Wz]. For the sake of brevity, we only consider three worlds per class. [WI] n 
[Wz] = 0 because both sets of worlds are ontologically incompatible. 

We can force A to be the structure of an equivalence relation by adding 
specific axioms as tautologies to our modal logic. The relationship between A 
and the tautologies is well studied by correspondence theory [Schmitt, 20011. 
In our case, the adopted modal logic is the system S5 [Guarino et al., 19941. 
The system S5 introduces the axiom O(A + B) + (OA + OB), which leads 
to a reflexive A and the axiom 1 O A  + O l O A  which leads to a transitive and 
symmetric A. 

2. Classification 
In the previous section we have discussed the formal characterization of an 

ontology as a logical theory accounting for an ontological commitment. We 
have chosen a very rich representation formalism in order to approximate the 
intended models as closely as possible. In practice, however, less expressive 
languages are used in order to allow (efficient) reasoning at run time. 

The difference with respect to expressiveness is only one dimension ac- 
cording to which we can classify ontologies. They also differ in purpose and 
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specificity. In the first case, we distinguish between reference and application 
ontologies. In the latter case, we distinguish among generic, core and domain 
ontologies. All three dimensions are depicted in Figure 3.4 and are discussed 
below. 

The classification acts as a guide throughout the document. It allows clar- 
ifying the different types of ontologies and the roles they play. For example, 
Section 3 introduces foundational ontologies which are generic, heavyweight 
and used for reference purposes. We exploit a foundational ontology as a start- 
ing point for the design of our management ontology in Part 11. The management 
ontology acts as a reference for concepts and associations in our universe of dis- 
course, is heavyweight and platform independent (core characteristic). Finally, 
Part I11 applies the management ontology in a concrete platform for reason- 
ing and querying. Thus, its purpose shifts from reference to application. We 
have to reduce the axiomatization to fit a computable representation formalism 
resulting in a lightweight version. We also have to specialize concepts and 
associations to reflect the idiosyncracies of the platform resulting in a domain 
v e r s i ~ n . ~  

Figure 3.4. Classification of ontologies. 

X ~ h e r e  exist other types of ontologies, e.g., linguisric or rerminological ontologies [Gangemi et al., 2003a1, 
and other classifications, e.g., [van Heijst, 1995, Sheth and Ramakrishnan, 2003,Guarino, 19981. 
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2.1 Classification according to Purpose 
We can distinguish between detailed reference ontologies and application 

ontologies. The first are only accessed from time to time for reference purposes, 
while the latter support reasoning at run time [Borgo et al., 20021. 

Application Ontology Used during run time of a specific application putting 
constraints on the axiomatization for the terminological service, i.e., the 
reasoner. The typical trade-off between expressiveness and decidability re- 
quires a limited representation formalism. As an example, consider the 
TBox of an ontology in description logics. Note that application ontologies 
may also describe specific worlds (called "semantic descriptions," "knowl- 
edge base," "metadata," "semantic metadata" or simply "instances.") In 
description logics, the specific worlds are captured by the ABox. 

Reference Ontology Used during development time of applications for mutual 
understanding and explanation between (human or artificial) agents belong- 
ing to different communities, for establishing consensus in a community 
that needs to adopt a new term or simply for explaining the meaning of a 
term to somebody new to the community. Although parts of the reference 
ontology can be formalized in a TBox as well, description logics are usually 
not expressive enough for reference purposes. 

2.2 Classification according to Expressiveness 
There is a tradeoff between a lightweight and a heavyweight ontology com- 

mitting to the same conceptualization: heavyweight ontologies try to specify 
the intended meaning of a vocabulary as precisely as possible. Their primary 
motivation is to enable mutual understanding in a heterogeneous environment. 
Their drawback is that they may be hard to develop and to reason with, both be- 
cause of the number of axioms and the expressiveness of the language adopted. 

Lightweight ontologies, on the other hand, may consist of a minimal set of 
axioms written in a language of limited expressiveness. Such an ontology may 
support only a limited set of specific services, intended to be shared among 
users who already agree on the underlying conceptualization. 

The tradeoff coincides with the dilemma between expressiveness and decid- 
ability of representation languages. On the one end, we find higher-order logic, 
full first-order logic or modal logic as that used in Section 1. On the other 
end, we find less stringent subsets of first-order logic, which typically feature 
executable calculi. They can be split in two major paradigms. First, languages 
from the family of description logics (DL) [Baader et a]., 20031 are strict sub- 
sets of first-order logic. The second major paradigm comes from the tradition 
of logic programming (LP) [Das, 19921. Though logic programming often uses 
a syntax comparable to first-order logics, it assumes a different interpretation 
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of axioms. Unlike a Tarski-style model theory, logic programming selects only 
a subset of models to judge semantic entailment of sentences. There are dif- 
ferent ways to select subsets of models resulting in different semantics - all 
of them geared to deal more efficiently with larger sets of data than common 
approaches based on first-order logic. One of the most prominent differences 
resulting from this different style of logical models is that expressive logic 
programming axiomatizations become non-monotonic. 

Heavyweight Ontology Heavyweight ontologies are extensively axiomatized 
and, thus, represent ontological commitment explicitly. The purpose of 
the axiomatization is to exclude terminological and conceptual ambiguities, 
which are due to unintended interpretations. Every heavyweight ontology 
can have a lightweight version. As with all dimensions, the borderline 
between lightweight and heavyweight is not clearly delimited. 

Lightweight Ontology Ontologies are often reduced to a simple taxonomy of 
concepts and a small number of associations. We classify such ontologies as 
lightweight ontologies because they are hardly axiomatized, as opposed to 
heavyweight ontologies. Lightweight ontologies are used when the intended 
meaning of the concepts used by the community is more or less known in 
advance by all members, and the ontology can be limited to those structural 
relationships among concepts that are considered as relevant. 

2.3 Classification according to Specificity 
The classification according to specificity introduces three layers: generic, 

core and domain ontologies. The reader may note that "pure" layers are impos- 
sible, since domain ontologies are mixed up with excerpts of other domains, 
other cores, etc. Moreover, the domain layer can shift with detail, application, 
or even evolution of a domain. [Guarino, 19981 

Generic Ontology The concepts defined by this layer are considered to be 
generic across many fields. Typically, generic ontologies (synonyms are 
"upper level" or "top-level" ontology) define concepts such as state, event, 
process, action, component, etc. 

Core Ontology Core ontologies define concepts which are generic across a 
set of domains. Therefore, they are situated in between the two extremes of 
generic and domain ontologies. The borderline between generic and core 
ontologies is not clearly defined because there is no exhaustive enumeration 
of fields and their conceptualizations. However, the distinction is intuitively 
meaningful and useful for building libraries. 

Domain Ontology Domain ontologies express conceptualizations that are spe- 
cific for a universe of discourse. The concepts in domain ontologies are of- 
ten defined as specializations of concepts in the generic and core ontologies. 
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The borderline between core and domain ontologies is not clearly defined 
because core ontologies intend to be generic within a domain. Thus, it is 
usually hard to make a clear cut between generic and core as well as be- 
tween core and domain ontologies. A concept, such as software component, 
would be placed in a core ontology for application servers for reuse'in every 
possible domain ontology we can think of. However, a concept, such as 
enterprise bean, might only be relevant in a specific J2EE setting. 

3. The Role of Foundational Ontologies 
While the development of some kinds of applications may be easier if ambi- 

guities in low quality ontologies are simply ignored, more sophisticated tasks 
necessitate the use of carefully designed ontological structures. This is the case 
when ontologies are used for meaning negotiation and explanation of terms, 
for establishing consensus in a community that needs to adopt a new term or 
simply for explaining the meaning of a term to somebody new to the commu- 
nity. Our first investigation of the domain of software components and Web 
services in Section 3 already revealed that a careful and rigorous ontological 
modelling is necessary. We encountered fundamental ontological questions, 
such as What is the difference between the users in the operating system, in the 
database system and within the application sewer's realm?, How to model the 
relationship between a user in an information system and the corresponding 
natural person? or What is the difference between a policy of a Web Service 
and an access right on a software component? Are they the same? Further- 
more, it is crucial to concisely explain concepts, such as software component or 
Web service, when designing a management ontology in Part 11. Such concepts 
typically suffer from ambiguity, i.e., users often differ in their understanding of 
such terms. An explicit representation of ontological commitment is required 
in order to exclude terminological and conceptual ambiguities bound to unin- 
tended interpretations. In this case, a rich axiomatization (in addition to an 
adequate informal documentation) seems to be unavoidable. 

Even if two users or systems adopt the same vocabulary, there is no guaran- 
tee that they can agree on a certain definition unless they commit to the same 
conceptualization. Assuming that each system has its own conceptualization, a 
necessary condition in order to make an agreement possible is that the intended 
models of the original conceptualizations overlap. Supposing now that these 
two sets of intended models are approximated by two different ontologies, it 
may be the case that the two ontologies overlap while the intended models do 
not (right side of Figure 3.5). This means that a bottom-up approach to systems 
integration based on the integration of multiple local ontologies may not work, 
especially if the local ontologies are only focused on the conceptual relations 
relevant to a specific context. Therefore, they are only weak and ad hoc approx- 
imations of the intended models. Hence, it seems more convenient to agree on 
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a generic ontology as a starting point for core and domain ontologies rather than 
relying on agreements based on the intersection of different ontologies (left side 
of Figure 3.5). [Guarino, 19981 

all possible structures of L 

ontology of A 

Figure 3.5. Two agents A and B can only communicate if their intended models IA(L) and 
IB(L) overlap. [Borgo et al., 20021 

We shall use the term foundational ontologies for such ontologies, ultimately 
devoted to facilitate mutual understanding. Designing a foundational ontology 
is a tedious task and requires expert knowledge. Figure 3.6 depicts how founda- 
tional ontologies are categorized according to the three dimensions introduced. 
They are heavyweight, i.e., extensively axiomatized and generic, i.e., domain- 
independent. Their main purpose is to have a concise reference at development 
time. However, lightweight versions of a foundational ontology can also be used 
for reasoning at run time. In fact, Part I1 leverages a foundational ontology as 
a starting point for our management ontology to benefit from its advantages. 

Because of their goals and nature, foundational ontologies need an expressive 
language in order to suitably characterize their intended models. Their compu- 
tational requirements are less stringent, since their main purpose is for meaning 
negotiation (reference characteristic), rather than for terminological services, 
i.e., run time reasoning. However, in order to also leverage the foundational 
ontology in a running system, one usually adopts the following approach: 

1 The foundational ontology is axiomatized in full first-order or modal logic. 

2 The part of the axiomatization that can be expressed in an executable lan- 
guage is isolated and implemented in a specific application (together with 
core and domain ontologies). 

3 The remaining part is added in the form of comments attached to concepts 
and associations. 
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Figure 3.6. Classification of ontologies and the role of foundational ontologies. 

Step 2 lets the ontology engineer choose a specific representation language 
that is executable, i.e., reasoning algorithms can be put into action during run 
time. This step requires the ontology engineer to manually adapt or remove the 
axioms of the foundational ontology. The result is a lightweight version of the 
foundational ontology. 

Of course, building foundational ontologies is extremely hard, both concep- 
tually and computationally. However, it only needs to be undertaken once, be- 
fore a cooperation process starts. An ontology engineer should strive for reusing 
a proven foundational ontology before modelling a core or domain ontology. 
The ontology engineer can thus leverage a richly predefined set of generic con- 
cepts and associations. The assumption of such a top-down approach is that 
core and domain ontologies have a better design by applying ontology design 
patterns captured by the foundational ontology.9 In addition, well-designed 
foundational ontology is very specific about the ontological choices to which 
it commits. This decision is often neglected or unconsciously made, leading 
to confusion later on. We discuss important ontological choices in the next 
section. 

- 

9 ~ x a m p l e s  for ontology design patterns are locations in space and time, which can be applied and specialized. 
The World Wide Web Consortium has even introduced a task force for this subject, cf. http: //www. w3. 
org/2001/sw/BestPractices/OEP/. 
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4. Ontological Choices 

Before addressing specific issues about the domain, its concepts and associa- 
tions, it is important to clarify the general attitude towards ontological analysis, 
or - in other words -- the constraints and the motivations that influence the 
conceptualization of reality. This clarification is often unconsciously made and, 
thus, remains blurred, leading to confusion later on. 

In an ideal case, a foundational ontology is used as a starting point for mod- 
elling a domain. A well-engineered foundational ontology is very specific about 
the ontological choices to which it commits. Hence, the ontology engineer is 
prompted to decide whether the ontological choices are suitable by reusing a 
foundational ontology. We discuss typical ontological choices, which are also 
called ontology meta-criteria, in the following sections. For the design of our 
management ontology, Part I1 chooses an appropriate foundational ontology on 
the basis of the ontological choices. 

4.1 Descriptive vs. Revisionary 

A descriptive ontology aims at describing the ontological assumptions be- 
hind language and cognition by taking the surface structure of natural language 
and common sense seriously. Under this approach, ontological categories are 
postulated in a rather unrestricted way, independently of evidence coming from 
other areas, such as physics or astronomy. In a descriptive ontology, the cate- 
gories refer to cognitive artifacts, more or less depending on human perception, 
cultural imprints and social conventions. The distinction between things and 
events is typically considered as a human perception and is adopted by descrip- 
tive ontologies.. 

A revisionary ontology, on the other hand, gives less importance to linguistic 
and cognitive aspects, and does not hesitate to suggest paraphrases of linguis- 
tic expressions or re-interpretations of cognitive phenomena in order to avoid 
ontological assumptions considered debatable on scientific grounds. A revi- 
sionary ontology is committed to capture the intrinsic nature of the world. As a 
consequence, an ontology of this type may impose that only entities extended 
in space and time exist. 

To give an example: common sense distinguishes between things (spatial 
or non-spatial objects), such as hardware or software components, and events 
(temporal objects), such as transactions or the lifecycle of a software component. 
In the wake of relativity theory, however, time is only another dimension for 
objects and some philosophers and computer scientists have come to believe 
that the commonsense distinction between things that are and things that happen 
should be abandoned for a view according to which everything extends in space 
and time. [Borgo et al., 20023 
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4.2 Multiplicative vs. Reductionist 
A multiplicative ontology aims at giving a reliable account of reality as it 

allows different entities to be co-localized in the same space-time. These co- 
localized entities are assumed to be different because they have incompatible 
essential properties. The drawback of this position is that it results in a larger 
number of basic concepts. 

A reductionist ontology postulates that each space-time location contains 
at most one object: incompatible essential properties are regarded as being 
linked to different points of view from which one can look at the same spatio- 
temporal entity. Typically, a reductionist ontology describes a great number of 
ontological differences with a smaller number of concepts. 

As an example, consider an application and the software components that 
make up the application. The multiplicativist states that these must be different 
entities, yet co-located: the application is constituted by a number of software 
components, but it is not a software component itself. When an application is 
formed, new properties are instantiated (e.g., the number of software compo- 
nents it uses), thus justifying the emergence of a new entity. The reductionist 
claims that the application and the software components are surely different, 
although not as entities, but as views of the same non-spatial object. [Borgo 
et al., 20021 

4.3 Possibilism vs. Actualism 
The fundamental thesis of actualism is: "Everything that exists is actual." 

Possibilism is the denial of this thesis and there are various forms of possibilism 
that correspond to the various ways in which one can deny this thesis. Claims, 
such as, "it is possible that a software component scl depends on sc2" are known 
as modal claims, because the sentential prefix "it is possible that" indicates a 
mode in which the statements it precedes are true. Modal claims are ubiquitous 
in our thought and discourse. Many of our reflective and creative thoughts seem 
to be about possibilities and much of our logical reasoning involves drawing 
conclusions which, in some sense, necessarily follow from premises that we 
already believe.1° 

When committing to possibilism, we are able to represent possibilia, i.e., 
possible entities, in our domain. In this case, the representation language is 
required to express modalities, i.e., quantification over worlds. Basically, two 
approaches are possible: either one includes modal and temporal operators in 
the representation language from the very beginning or one reproduces modal 
reasoning into a first-order language, adding time and world parameters to the 
predicates. The first approach is called modal logic where we are able to literally 

I0http: //plate. stanford. edu/entries/actualism/ 
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translate the expression, "it is possible that a software component scl depends 
on sc2" into the formalism. The second approach only allows rephrasing the 
expression by, "there is a world in which scl depends on SC~."  

4.4 Endurantism vs. Perdurantism 
A fundamental ontological choice deals with the notion of change. What does 

it mean for an entity to change? This question raises the problem of variation 
in time and the related issue of the identity of the objects of experience. There 
are two main approaches, viz., endurantism (also called 3D paradigm) and 
perdurantism (also called 4D paradigm). 

Perdurantism assumes that entities extend in time and in space. That means 
entities have both spatial and temporal parts (and, therefore, four dimensions). 
Therefore, a 4D entity (usually called perdurant, occurrence or simply process) 
is not wholly present at a point in time, but its whole is extended in space, as 
well as time. The entity at a point in time is a temporal part of the whole. For 
example, the lifecycle of a software component can be considered a 4D entity, 
where the phases of the initialization, the running state and the termination are 
its temporal parts. 

Endurantism treats entities as 3D objects (sometimes called endurants or 
continuants) that pass through time and are wholly present at each point in time. 
Hence, 3D entities do not have temporal parts. A software component can be 
considered a 3D entity as opposed to its lifecycle (in which it participates). It 
is wholly present during all three phases of its life." Generally speaking, the 
3D approach corresponds well with the way that language works. Language 
has a focus around here, now, you and me as a context, and on the current 
state of affairs. This leads to efficient communication under the most common 
circumstances. [Stell and West, 20041 

4.5 Extrinsic Properties 
Besides the ontological choices discussed above, several extrinsic properties 

of foundational ontologies play an important role. The ontology engineer might 
base his decision on the representation language, existing links to linguistic 
ontologies, as well as on modularization. 

Representation Language We already discussed in Section 2 that represen- 
tation languages typically encounter the trade-off between expressiveness 
and efficiency. We have undecidable languages, such as modal logic on the 
one hand and descriptions logics or logic programming on the other. Other 
criteria for the choice of the language include standardization. As an exam- 

"Note that a software component is non-physical and, therefore, not extended in space. However, the 
distinction is meaningful also for non-physical objects. 
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ple, the World Wide Web Consortium recently published a recommendation 
for the Web Ontology Language (OWL) [McGuinness and van Harmelen, 
20041, which is based on description logics. 

Link to Linguistic Ontologies As mentioned in Section 2, linguistic or lexical 
ontologies express only classes corresponding to existing natural language 
terms. WordNet [Miller et al., 19901 is the most prominent representa- 
tive. For some applications it might be of interest to have the foundational 
ontology linked to such linguistic information as well. 

Modularization A well-designed foundational ontology should decrease the 
danger of over-commitment, i.e., the inclusion of theories that are not used 
or not shared by the engineer, by extensive modularization along the on- 
tological choices and domains. It should be minimal and include only the 
most reusable and widely applicable generic categories. Typical theories 
that come in the form of ontology modules are: theories of time, plans, 
contextualization or information objects. 

5. Summary 
In this chapter we have introduced the reader to ontologies as a means to 

explicitly specify conceptual models with logic-based semantics. Such con- 
ceptual models are required to harmonize the implicit and incoherent models 
underlying the deployment and WS* descriptions of application servers and 
Web services middleware. We have discussed ontology quality criteria, which 
are used later on to assess whether the quality of existing ontologies is sufficient 
for our purposes. 

We have also introduced a possible classification of ontologies, which acts 
as a guide throughout the document. It allows us to clarify the different types 
of ontologies and the roles they play. In this chapter we have had a closer look 
at foundational ontologies. Their role is that of a starting point for building 
core and domain ontologies. In Part I1 a foundational ontology is exploited 
as a modelling basis for our management ontology, i.e., we relate its concepts 
and associations to the basic categories of human cognition investigated by 
philosophy, linguistics and psychology. Thus, we are prompted to sharpen 
our notions with respect to the distinctions made in the foundational ontology. 
Having learned that the domain of software components and Web services 
demands a careful and rigorous modelling, foundational ontologies are a good 
basis from which to start modelling. 

Each foundational ontology commits to specific ontological choices, such as 
endurantism, possibilism, etc. We have discussed the major ontological choices 
in this chapter because Part I1 decides chooses an appropriate foundational 
ontology based on these choices. 



Chapter 4 

TOWARDS SEMANTIC MANAGEMENT 

In Chapter 2 we have discussed the evolution of middleware focussing on 
application servers and Web services. Their deployment descriptors and WS* 
descriptions make development and management very flexible. However, the 
conceptual model underlying the different descriptions is only implicit. Hence, 
its bits and pieces are difficult to retrieve, survey, check for validity and maintain. 

To remedy such problems, we propose the semantic management of software 
components and Web services to support the developer and administrator. The 
underlying conceptual model of component and service descriptions has to be 
made explicit by formal logic-based semantics. As we have discussed in Chap- 
ter 3, this can be achieved by applying an ontology, which, in our case, has to 
capture properties of, relationships between and behaviors of the components 
and services that are required for management. Therefore, semantic descrip- 
tions of software components and Web services may be queried, may foresight 
required actions, or may be checked to avoid inconsistent system configurations 
(during development, as well as during run time). Thus, the ontology-based 
approach retains the original flexibility in configuring and running the middle- 
ware, but it adds new capabilities for the developer and administrator of the 
system. 

However, semantic management does not come for free. Modelling efforts 
have to be expended by developers and administrators in order to arrive at se- 
mantic descriptions of components and services. We claim that the full breadth 
of management requires an understanding of the world that is too deep to be 
modelled explicitly. Instead, we foresee a more passive role for semantic man- 
agement - one that is driven by the needs of the developers who must cope 
with the complexity and who could use valuable tools for integrating previously 
separated aspects. 
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This line of argumentation leads us to our working hypothesis: There is a 
trade-off between expending efforts for management and expending efforts for 
semantic modelling. The tradeoff is depicted qualitatively in Figure 4.1. On the 
one hand, typical management efforts comprise the assessing and controlling 
of components and services for their efficiency and productivity, their tailoring 
to make them operate properly, the definition and control of access rights and 
the provision of quantitative information about them. On the other hand, se- 
mantic descriptions require modelling efforts that comprise manual modelling 
or obtaining and integrating existing sources. 

Efforts 

high 

low 

coarse fine 

Granularity 
of Modelling 

Figure 4.1. Working Hypothesis. 

The objective of automating all management tasks by semantic modelling 
needs very fine-grained, detailed modelling of all aspects - essentially every- 
thing that an intelligent human agent must know for managing the middleware. 
Thus, modelling efforts skyrocket at the end of fine-grained modelling. At 
the other end, where modelling is very coarse and little modelling facilitates 
management, efforts for managing distributed systems soar as experiences have 
shown in the past. No matter what the exact scale of granularity and efforts 
are, the qualitative indication of management and modelling efforts, such as 
depicted in Figure 4.1, leads to an overall total effort picture as indicated in the 
same figure. 

In this chapter we elaborate on the Main Question I from the Introduction: 
How tofind a good trade-off between modelling and management efforts? The 
answer is derived from an (inexhaustible) set of use cases (Section 2) that 
respond to the Questions I. 1 who uses the semantic descriptions?, 1.2 what are 
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they used for, and 1.3 when do they occur? The use cases also serve as an input 
to Part I1 for choosing which aspect our ontology should formalize (Question 
1.4). The use cases are embedded in scenarios for a specific type of application 
server and for a Web services application, respectively (Section 1). 

Parts of this chapter have been published in conference proceedings and 
technical reports. The Application Server for the Semantic Web scenario was 
originally introduced in [Oberle et al., 2005dl. The Web Services in SmartWeb 
scenario stems from the German BMBF project of the same name. Application 
server use case are taken from [Oberle et al., 2004a1, Web services use case 
from [Oberle et al., 2005al. 

1. Scenarios 
In this section we discuss two scenarios in which we later embed our use 

cases. The first one stems from the concrete needs of the wonderweb' project, 
whose objective was, among others, to provide a comprehensive infrastructure 
to link new and existing Semantic Web tools. We first introduce the reader to the 
Semantic Web, followed by the particular situation for application development 
it creates. The conclusion is that we need an Application Serverfor the Semantic 
Web extending common application servers for easier development of Semantic 
Web applications. 

The second scenario, called Web Services in SmartWeb, stems from the 
project of the same name.2 The goal of the SmartWeb project is to lay the 
foundations for multimodal user interfaces to distributed Web services on mo- 
bile devices. This results in the need to integrate a more or less confined set 
of several Web services into the system. Statical coding of the Web services 
invocations and compositions will lead to an inflexible system. 

It is desirable to attach semantic descriptions to relevant components and 
services in both scenarios, such that some management tasks can be automated. 
We encounter the typical trade-off between management and modelling efforts 
that is addressed in Section 2 by discussing typical use cases. 

1.1 An Application Server for the Semantic Web 
The Semantic Web 

The Internet and the WWW in particular were designed as an information 
space, with the goal that it should be useful not only for human-human commu- 
nication, but also that machines would be able to participate and help. One of 

'wonderweb [Oberle et al., 2005el has been a European Union IST (Information Society Technolo- 
gies programme) project funded by the initiative on Future and Emerging Technologies (FET). http: 
//wonderweb.semanticweb.org 
'smartweb is funded by the German Federal Ministry of Education and Research (BMBF). http: 
//smartweb. semanticweb. org 
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the major obstacles is the fact that most information on the WWW is designed 
for human consumption. Even if it was derived from a database with well de- 
fined meanings (in at least some terms), the meaning of the data is not evident 
to a web application system. [Berners-Lee, 19981 

The way out of this shortcoming is the Semantic Web, which augments the 
current WWW by giving information a well-defined meaning, thereby better 
enabling computers and people to work in cooperation. This is done by adding 
machine understandable content to Web resources. The results of this process 
are semantic descriptions that can be a simple statement, such as "site x's author 
is Daniel Oberle." Such descriptions are given their semantics by referring to 
an ontology (cf. Chapter 3). For example, in the statement above, we could 
express that "Daniel Oberle" is a PhD-Student and that PhD-Student is a 
specialization of Graduate-Student, where both concepts are introduced in 
an ontology. 

In this section we want to introduce the reader to the architecture and lan- 
guages of the Semantic Web. We start with the static part, which is depicted on 
the left hand side of Figure 4.2 [Bemers-Lee, 20001, i.e., its language layers. 
Unicode, the URI and namespaces (NS) syntax and XML are used as a basis. 
XML's role is limited to that of a syntax carrier for data exchange. XML Schema 
[Biron and Malhotra, 20011 introduces simple data types, such as string, date 
or integer and allows us to define complex data types. 

Figure 4.2. Static and dynamic aspects of the Semantic Web layer cake. 

The Resource Description Framework (RDF) may be used to make simple 
assertions about Web resources or any other entity that can be named. A simple 
assertion is a statement that an entity has a property with a specific value, for 
example, that the author of this work has a name property with value, "Daniel 
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Oberle." RDF Schema extends RDF by class and property hierarchies that 
enable the creation of simple ontologies. 

RDF and RDFS are already standardized by the World Wide Web Consortium 
(W3C) [Manola and Miller, 20041. Figure 4.3 depicts an example for semantic 
descriptions in the domain of research and academia. The ontology features 
a concept Person, along specializations, such as Graduate-Student, PhD- 
Student, as well as Academicstaff and Professor. The modelling primitives 
of RDFS formalize the domain description as RDF statements, e.g., PhD- 
Student rdfs:subClassOf Graduate-Student. CooperatesWith is a sym- 
metric property defined on Person by using the rdfs:domain and rdfs:range 
primitives. 

Daniel Oberle 

He is working together with 
Steffen SLaab - on semantic 
mtddleware 

x:cooperatesWith 

Semantic 
Descriptions 

Web page 

URL 

~:Prof.ssor rdf :ID="p~rson-sst"> 
<x:n->Steffen Staab</x:n-> 

. . . 
/x:Prof.ssor> 

Steffen Staab 

Semanttc Web, Knowledge 
Management, Semantlc 

Figure 4.3. Semantic Web example in RDF(S) notation ( [Manola and Miller, 20041) where 
ovals represent concepts and edges represent associations. 

XML serializations of RDF statements can be added to Web resources, such 
as the homepages of PhD-Student "Daniel Oberle" and Professor "Steffen 
Staab." The descriptions formally define both as instances of the ontology's 
concepts through the rdf:type primitive. Relationships are provided with formal 
semantics by referring to the ontology. A search engine could later infer that 
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also "Steffen Staab" cooperates with "Daniel Oberle" because the property is 
defined to be symmetric. 

The Ontology layer features the Web Ontology Language (OWL [McGuin- 
ness and van Harmelen, 20041). OWL is a family of richer ontology languages 
consisting of OWL Lite, DL and Full. They augment RDF Schema and are 
based on the descriptions logics (DL) paradigm [Baader et al., 20031. OWL 
Lite is the simplest of these. It is a limited version of OWL DL enabling a 
simple and efficient implementation. OWL DL is a richer subset of OWL Full 
for which reasoning is known to be decidable so complete reasoners may be 
constructed, though they will be less efficient than an OWL Lite reasoner. OWL 
Full is the full ontology language which is undecidable, however. 

The Logic layer3 will provide an interoperable language for describing the 
sets of deductions one can make from a collection of data. Given an ontology- 
based information base, one can derive new information from existing data via 
logical rules. 

The Proof language will provide a way of describing the steps taken to reach 
a conclusion from the facts. These proofs can then be passed around and 
verified, providing short cuts to new facts in the system without having each 
node conduct the deductions themselves. 

The Semantic Web's vision is that once all these layers are in place, we will 
have an environment in which we can place trust that the data we are seeing, the 
deductions we are making, and the claims we are receiving have some value. 
The goal is to make a user's life easier by the aggregation and creation of new, 
trusted information over the Web [Dumbill, 20011. The standardization process 
has currently reached the Ontology layer, i.e., Logic, Proof and Trust layers are 
not specified yet. 

The right hand side of Figure 4.2 depicts the Semantic Web's dynamic aspects 
that apply to data across all layers. Often, the dynamic aspects are neglected 
by the Semantic Web community; however, from our point of view, they are 
an inevitable part for putting the Semantic Web into practice. Transactions and 
rollbacks of Semantic Web data operations should be possible, following the 
well-known ACID properties (atomicity, consistency, independence, durabil- 
ity) of database management systems (DBMS). Evolution and versioning of 
ontologies are an important aspect; because ontologies usually are subject to 
change (cf. [Peters and Oezsu, 1997, Banerjee et al., 1987, Stojanovic et al., 
2002al). As in all distributed environments, monitoring of data operations 

3~ better description of this layer would be "Rule layer," as the Ontology layer already features a logic 
calculus with reasoning capabilities. We here use the naming given by Tim Berners-Lee in his roadmap. 
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becomes necessary for security reasons. Finally, reasoning engines are to be 
applied for the deduction of additional facts: as well as for semantic validation 

Application Development for the Semantic Web 
Ontologies serve various needs in the Semantic Web, such as storage or 

exchange of data corresponding to an ontology, ontology-based reasoning or 
ontology-based navigation. Building a complex Semantic Web application, one 
may not rely on a single software module to deliver all these different services. 
The developer of such a system would rather want to easily combine different 
- preferably existing - software modules. 

An example would be the domain ontology for an application supporting 
research and academia [Oberle and Spyns, 2004, Spyns et al., 2002, Hartmann 
and Sure, 20041. Such an application manages information about a university's 
staff, their publications, students and courses. Its ontology can be easily ex- 
pressed by Semantic Web languages and constructed by a corresponding editor 
(cf. Figure 4.4). There will be properties of concepts that require structured 
XML Schema data types [Biron and Malhotra, 20011 whose correctness can 
be checked by a validator. A description logic reasoner is usually applied for 
semantic validation of the ontology. An ontology store saves the ontology and 
can be reused by a research and academia portal. The latter may exploit a rule- 
based inference engine that is capable of handling large amounts of instances 
and deduction of additional information by rules.' 

Ontology Editor 
APPLICATION Perwn 
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P 

Graduate-Student Q( b AcadanicSfotl Fd 
XML Schema 

SOHWARE ~ ~ ~ l i d ~ t ~ ~  ....... ....* .....* Ru d 
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C, ~r lhd( r~  wnon = tmduateStudent Ontology coopemtermv.xl <-> 
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Figure 4.4. Information flow in the research and academia example. 

4 ~ . g . ,  if cooperateswith is defined as a symmetric property in OWL DL between persons. A reasoner 
should be able to deduce that B cooperateswith A, given the fact that A cooperateswith B. 
5 ~ h e  reader may note that we neglect the details of translating between logic languages for the sake of a 
simple scenario. 
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So far, such integration of ontology-based modules had to be done in an ad 
hoc manner, generating a one-off endeavor, with little possibilities for re-use 
and future extensibility of individual modules or the overall system. 

The new situation requires an infrastructure that facilitates plug'n'play engi- 
neering of ontology-based modules and, thus, the development and maintenance 
of comprehensive Semantic Web applications. The aim is to facilitate the re- 
use of existing modules, e.g., ontology stores, editors, and inference engines, 
to combine means to coordinate the information flow between such modules, 
to define dependencies, to broadcast events between different modules and to 
translate between ontology-based data formats. We shall adopt the concepts 
and technologies underlying common application servers in order to reach that 
goal. The result is an Application Sewer for the Semantic Web (ASSW) extend- 
ing common application servers by means of easier development of Semantic 
Web applications. We build such an application server in Chapters 8 and 9. 

1.2 Web Services in SmartWeb 

SmartWeb - Mobile Broadband Access to the Semantic Web 

Recent progress in mobile broadband communication and Semantic Web 
technology is enabling innovative internet functionality that provides advanced 
personalization and localization features. The goal of the SmartWeb project 
is to combine these functionalities and to lay the foundations for multimodal 
user interfaces to distributed Web services on mobile devices. The vision is to 
exploit the Web as a knowledge base to answer a broad range of user questions. 
The questions are asked by a human via a multimodal dialog system that com- 
bines speech, gesture, and facial expressions for input and output. Spontaneous 
speech understanding may be combined with the video-based recognition of nat- 
ural gestures and facial expressions. Besides information-seeking dialogues, 
SmartWeb aims to support task-oriented dialogues, in which the user wants 
to perform .a transaction (e.g., buy a ticket for a sports event or program his 
navigation system to find a souvenir shop). 

SmartWeb is based on two parallel efforts in order to reach that goal. The 
first effort is the Semantic Web providing the explicit markup of the content 
of Web pages (cf. Section 1.1). Its contents may be exploited mainly for 
information-seeking dialogues. The size and dynamic nature of the Web and the 
fact that the content of most Web pages is encoded in natural language makes 
this an extremely difficult task. Therefore, SmartWeb exploits the machine- 
understandable content of Web pages for intelligent question-answering as a 
next step beyond today's search engines. Since semantically annotated Web 
pages are still very rare due to the time-consuming and costly semantic mod- 
elling, SmartWeb is using advanced language technology and information ex- 
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traction methods for the automatic annotation of traditional Web pages encoded 
in HTML or XML. 

The second effort is the integration of Web services in the system which 
allows task-oriented dialogs and user transactions. Multimodal user requests 
may lead to automatic Web service discovery and invocation, and also to the 
automatic composition, interoperation and execution monitoring of Web ser- 
vices - although with a more or less confined set of Web services as we learn 
below. 

The context-aware user interface of SmartWeb supports the user in different 
roles, e.g., as a car driver, a motor biker, a pedestrian or a sports spectator. 
One of the demonstrators of the project is a personal guide for the 2006 FIFA 
world cup in Germany that provides mobile infotainment services to soccer 
fans, anywhere and anytime. 

Another SmartWeb demonstrator is based on peer-to-peer communication 
between a car and a motor bike. When the car's sensors detect aqua-planing, 
for example, a succeeding motor biker may be warned by the system. The biker 
can interact with the system through speech and haptic feedback; the car driver 
can input speech and gestures. 

The Role of Web Services 

Figure 4.5 depicts a simplified view of the SmartWeb architecture. On the 
user's side, we find the SmartWeb Client incorporated by a UMTS cell phone. 
The client allows multimodal input, such as speech or browsing. The thus 
generated dialogue, i.e., user questions, is transmitted to the SmartWeb Server. 

Within the server, dialogues are processed and analyzed by the Semantic Me- 
diator. It exploits a knowledge base to answer information-seeking dialogues, 
which are structured according to an ontology. Semantically annotated Web 
pages and text mining results from common pages are the initial sources of the 
knowledge base. Basically, the Semantic Mediator has to deal with two cases: 
(i) the answer to the dialogue is already formalized in the knowledge base and 
(ii) the answer is missing or is incomplete. In the first case, a simple querying 
of the knowledge base might lead to several answers stemming from different 
sources with different timeliness and trustworthiness. Hence, the Semantic Me- 
diator has to choose a suitable one according to corresponding algorithms. In 
the second case, the Semantic Mediator has to acquire additional information 
in order to answer the question. This can be achieved by applying reasoning on 
the knowledge base. By doing so, the answer might be deduced from existing 
facts. Otherwise, Web service access might help, e.g., by asking Google and 
processing its results in natural language. If this step is successful, the answer 
is asserted as an additional fact in the knowledge base. 

The Web service Access module (cf. Figure 4.5) obtains answers to questions 
which are not derivable from the knowledge base. In this case the Google Web 
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Figure 4.5. Simplified SmartWeb Architecture. 

service might be exploited to complete the missing facts. Also, one of the 
project partners, viz., T-Info, provides several Web services for mobility and 
traffic inf~rmation.~ Examples comprise route planning functionality, a city 
guide, GPS geocode services, temperature, UV radiation, air quality and many 
more. They deliver very dynamic information, which is usually not asserted in 
a database. 

Although further Web services enabling user transactions (e.g., buying a 
ticket) will be integrated in the system, this is a rather closed world. The obvious 
way to implement the Semantic Mediator and Web service Access module is 
to code which Web service has to be invoked given a specific query. For 
instance, when the user asks for weather information, the WeatherCondit ion 
service may deliver the answer. In addition, simple composition is necessary 
if the Weathercondition service takes a GPS position as argument, but the 
question talks about zip codes. 

Statically coding which of the several Web services has to be invoked is a 
very tedious task that leads to an inflexible application with high management 
efforts. The application would have to be recoded whenever a service changes 
or a new one should be integrated. Hence, it is be desirable to attach semantic 
descriptions to the relevant Web services in a way that invocation, simple com- 

6http: //services. t-inf o .de/soap 
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position and other management tasks can be automated. Here, we encounter 
the typical trade-off between management and modelling efforts. Automation 
does not come for free, but has to be bought by modelling all the Web services 
to a certain extent. We solve the trade-off in the next section by discussing 
typical use cases. 

2. Use Cases 
In order to approach the trade-off point mentioned at the beginning of this 

chapter, it is necessary to ask and to answer the following questions from the 
Introduction: who uses the semantic descriptions?, what are they used for? 
and when do they occur? The answers are derived from use cases which are 
embedded in the scenarios and split into application servers and Web services. 
Additionally, the use cases serve as an input to Part I1 by answering which 
aspects our ontology should formalize. The list below is neither exhaustive nor 
are the individual use cases mutually exclusive because there is a large number 
of use cases where semantic management may help the developer. 

Question 1.1 Who uses semantic descriptions? 

We see two major groups of users constituted by ( i )  software developers 
and (ii) administrators. These two groups of users have the need to predict or 
observe how software components and Web services interact, get into conflict, 
behave, etc. It will be very useful for them to query a system for semantic man- 
agement that integrates aspects from multiple deployment or WS* descriptions 
- which has not been possible so far. As a third "group of users," we foresee 
that applications may also exploit the querying and reasoning capabilities to 
allow autonomous control of interaction. Thus, running components or Web 
services constitute a third group. We consider the autonomous exploitation by 
programmes a rather desirable side effect of our approach. 

Question 1.2 What are the semantic descriptions used for? 

We consider management tasks consisting of five basic categories, namely 
fault, performance, configuration, security and accounting. They are introduced 
in the definition of "network management" by the International Standards Or- 
ganization (ISO), but general enough to be applied here, too. The bare essence 
of fault management is monitoring in order to detect anomalies (faults) as soon 
as they occur and taking the necessary corrective action. Pe~ormance man- 
agement consists of assessing and controlling the efficiency and productivity 
of the managed elements. ConJguration management is generally thought of 
as tailoring a managed element so that it will operate in the desired way. The 
aim of security management is to define who may perform which task and un- 
der what conditions. Finally, accounting management is the task of providing 
quantitative information of resource utilization. [Sturm and Bumpus, 19981 
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Question 1.3 When are the semantic descriptions used? 

We consider three different stages, viz., development time, deployment time 
and run time. 

Question 1.4 Which aspects should be formalized by our ontology? 

On the one hand, we want to be able to automate management tasks covering 
a broad range of aspects (such as security, policies, interface descriptions, etc.). 
On the other hand, the complexity of the ontology has to be kept small to avoid 
overburdening the developer. In addition, the answers to the Question 1.4 serve 
as modelling requirements for building a suitable management ontology in Part 
11. 

2.1 Application Servers 
The use cases below propose the facilitation of some typical application 

server management tasks by a justifiable amount of semantic descriptions. That 
means, we do not strive at full automation of all management tasks but approach 
the trade-off between modelling and management efforts. 

Library Dependencies and Versioning 
Software libraries often depend on other libraries and a specific library can 
contain several libraries at once. Given this information, semantic descriptions 
can be exploited to locate all the required l ibrarie~.~ Furthermore, the user 
might be notified when two libraries require different versions of a third one. 
For instance, the multitude of versions of XML parsers cause a lot of trouble. 
Semantic management could comprise reasoning with this kind of information 
in order to make an educated suggestion or to display inconsistencies. 

Who: Developer 
What for: Configuration management 
When: Development and deployment time 
Which aspects: Libraries 

Licensing 
Similar to the library dependencies, we can describe licensing, trustworthiness 
and quality. Including an external module in one's software has effects on the 
licensing options. For instance, using external GPL licensed code prohibits 

 h his idea is the basis of the RPM package manager: http://www.rpm.org/. Semantic management could 
generalize this approach and integrate it with other tools for the developer. 
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distributing the bundle under a LGPL license. Along the same lines, I S 0  
software certification or a security guideline of a government agency might 
prohibit certain external components to be used in mission critical software. 
In all of these cases, it would be useful to model development constraints and 
reason with these and semantic descriptions to avoid problems. 

Who: Developer 
What for: Configuration and security management 
When: Development time 
Which aspects: Licenses 

Capability Descriptions 
Component capabilities adhering to standard interfaces can be made explicit to 
the developer by component profiles, i.e., semantic descriptions of component 
capabilities. For example, there is a lowest common denominator interface for 
description logics reasoners that can be used by applications, such as ontology 
editors. However, the behavior and capabilities of the specific reasoners used 
can vary dramatically. For example, some reasoners support inferences with 
instances (called ABox reasoning) others do not. 

Who: Developer and Administrator 
What for: Configuration management 
When: Development and deployment time 
Which aspects: Component profiles 

Component Classification and Discovery 
Given API's of a specific type, e.g., ontology stores, one will find different 
implementations with essentially the same functionality. We suggest align- 
ing the corresponding component profiles in application-specific component 
taxonomies. This will allow the developer to discover implementations for a 
certain taxonomy entry and to classify them. 

Who: Developer 
What for: Configuration management 
When: Development time 
Which aspects: Component taxonomy, semantic API description 

Semantics of Parameters 
Parameters and return types of methods are often implicitly encoded in the 
respective names. Providing meaningful names is considered to be an impor- 
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tant practice when developing software systems. However, it is also desir- 
able to relate the names with concepts and associations of a common, agreed- 
upon domain ontology. Different ontology stores will provide different names 
for methods with comparable functionality (e.g., storeconcept 0 vs. add- 
Concept 0). Just as the point mentioned before, this will allow more powerful 
searches over a large unfamiliar API. These descriptions can even be used to 
generate a sequence of method invocations in order to achieve a goal specified 
[Eberhart, 20041. 

Who: Developer 
What for: Configuration management 
When: Development time 
Which aspects: Semantic API description 

Automatic Generation of Web Service Descriptions 
Development toolkits usually provide functionality for creating stubs and skele- 
tons or for automatically generating interface metadata tL la java2wsdl. With an 
entire set of new markup languages, such as WS-BPEL [Andrews et al., 20051 
or OWL-S [Martin et al., 20041 emerging, tool support for these new lan- 
guages is needed. Whereas WSDL [Christensen et al., 20011 tools can obtain 
almost all of the required input directly from the source code, richer descrip- 
tions in these languages require additional metadata. If the respective metadata 
are already available within the system, automatically generated WS-BPEL or 
OWL-S descriptions can be a side product of a unified framework. 

Who: Developer and administrator 
What for: Configuration management 
When: Development, deployment and run time 
Which aspects: Component profile, (semantic) API description 

Access Rights 
The access control mechanisms of application servers are based on users and 
roles to whom access can be granted for certain resources and services. In 
addition, components can be run using the credentials of the caller or those 
of another user that runs the component on behalf of the caller. This is often 
referred to as the authentication problem [Gray and Reuter, 19931. It is quite 
evident, that access rights within a large application can be very complex (cf. 
Example 2.1 on page 23). Semantic management could comprise assistance of 
the administrator in suggesting suitable settings and in determining potential 
flaws in the security design. We believe that formal reasoning over group 
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memberships or resources being accessed by processes running on behalf of 
other users will prove to be valuable here. 

Who: Administrator 
What for: Security management 
When: Development and deployment time 
Which aspects: Access rights 

Error Handling 
Modern programming languages make heavy use of exceptions. Exceptions 
are raised and propagated along the calling stack in order to be handled at the 
appropriate level. In order to avoid the embarrassing situation that an exception 
is not handled at all and simply passed to the user interface or business partner, 
a consistency check can be put in place. Similar to the argument made in the 
previous example, rules describing how exceptions are thrown, passed across 
the calling stack and being caught or not can be applied in this case. 

Who: Developer 
What for: Fault management 
When: Development time 
Which aspects: API description (exceptions) 

Transactional Settings 
Ontology or RDF stores typically offer transactional recovery. This notion 
is extended to general software components (e.g., EJB), which access transac- 
tional resources. Methods can be declared to not support transactions, to initiate 
a new transaction or to participate in the caller's transaction. Again, a chain 
of calls across many components can contain inconsistent settings, such as a 
component which requires a transaction calling one that does not support trans- 
actions. A formalization of invocations and the possible transactional settings 
can be applied here. 

Who: Developer 
What for: Fault management 
When: Run time 
Which aspects: Component profile, workflow information 

Secure Communication 
Confidential data might be made accessible to business partners only. Settings 
on the application server typically determine that a digital signature has to be 



70 SEMANTIC MANAGEMENT OF MIDDLEWARE 

checked before the request is passed along and that a component can only be 
bound to a secure communication line or protocol. Similar to the arguments 
made above, semantic management should be able to detect that a confidential 
resource is accidentally made accessible via a non-encrypted communication 
channel. 

Who: Developer 
What for: Security management 
When: Development, deployment and run time 
Which aspects: Component profile, workflow information 

2.2 Web Services 
The use cases below propose the facilitation of some typical Web service man- 

agement tasks by a justifiable amount of semantic descriptions. The research 
field of "Semantic Web Services" (cf. related work in Chapter 11, Section 3) 
addresses very similar use cases. However, the approaches in this field usually 
aim at full automation of all management tasks. In contrast, we approach the 
trade-off point between modelling and management efforts. 

Analyzing Message Contexts 
Message passing plays the central role for Web services. A message sent to a 
service can in turn trigger several other messages being sent out on behalf of 
the initial message. Messages may carry a context with information about the 
sender, the sender's credentials, or the message's transactional context. During 
the deployment of a service, the administrqtor makes important choices as to 
how messages are propagated. These include whether the sender information 
is carried along or whether the new message is sent on behalf of a new user 
(also called the run-as paradigm). Similar choices are made with respect to the 
transactional settings. Services can choose to always open a new transaction, 
require a prior transactional context, or open a new transaction when needed. In 
a scenario such as Smartweb, where networks of direct and indirect invocations 
are possible, it is crucial to be able to detect configuration errors. As an example, 
consider a situation where a service switching to user context X and calling Y 
does not have user X in its access control list. 

Who: Administrator 
What for: Security and configuration management 
When: Deployment time 
Which aspects: Service profile, workflow information, access rights 
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Selecting Service Functionality 
There are several approaches to automatized runtime service matching in the 
area of Semantic Web Services, e.g., [Li and Horrocks, 2003, Paolucci et al., 
2002a, Paolucci et al., 2002bl. However, it remains to be seen whether the 
problems related to semantic interpretations of documents can be solved in the 
full generality needed for real-life interactions between corporations. 

Instead, we want to provide developers with some tool support in brows- 
ing and selecting an appropriate service at development time. The canonical 
approach to this task is a taxonomic categorization of services together with se- 
mantic descriptions of their capabilities. Naturally, searching for services of a 
certain capability class C should also yield all services classified as instances of 
subclasses of C. In the case of our SmartWeb scenario, the Weathercondition 
service would belong to the category of "Environment" services, for instance. 

Who: Developer 
What for: Configuration management 
When: Development time 
Which aspects: Service taxonomy, semantic API description 

Policy Handling 
Policies play an increasing role, as demonstrated by the recent WS-Policy [Ba- 
jaj et al., 20041 proposal. The idea of a policy is to lay out general rules and 
principles for service selection. Thus, rather than deciding whether an invoca- 
tion is allowed on a case by case basis at run time, one excludes services whose 
policy violates the local policy at development time. The major benefit is that 
policies can be specified declaratively. The administrator can specify policies 
much in the same way as writing an SQL query, i.e., writing down what should 
be done instead of how to implement it. 

This use case does not aim at fully automated policy matching at run time, as 
we think that the full generality of policy matching imposes further problems 
that remain to be solved. Let alone the lack of WS-Policy engines so far. Instead 
we propose to apply semantic modelling in order to make policy handling more 
convenient for the developer. As an example, consider a large WS-BPEL work- 
flow where checking for external task service invocations which are associated 
with a policy remains a tedious and manual task. Semantic descriptions can 
help to notify the developer if an external Web service in the BPEL workflow is 
associated with a policy, for instance. This situation is depicted in Example 2.5 
on page 30, where the WS-Policy document states that a credit card validation 
service is only invocable with specific authentication methods. 

Who: Developer, System 
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What for: Security management 
When: Development and run time 
Which aspects: Policies 

Detecting Loops in Interorganizational Workflows 
Web services based applications may use asynchronous messaging, bringing 
upon quite complex interaction protocols between business partners. Current 
workflow design workbenches only visualize the local flow and leave the or- 
chestration of messages with the business partners up to the developer. We 
believe that sufficient information is available in machine-readable format so 
that semantic management can assist the developer in this task. For instance, 
the structure of the local flow can be combined with publicly available abstract 
flows of the partners in order to detect loops in interorganizational workflows 
that might lead to non-termination of the system. 

As shown in the bioinformatics domain [Lord et al., 20041, automated com- 
position of workflows is likely to be inappropriate in most cases. Hence, we 
propose to support the developers in their management tasks and not to replace 
them. 

Who: Developer 
What for: Fault management 
When: Development time 
Which aspects: Workflow information 

Incompatible Inputs and Outputs 
Type checking is not as straightforward anymore, using loosely coupled services 
operated by a large number of organizations. Furthermore, the interpretation 
of a B2B term such as 'price' might be different, even though syntactically it 
refers to an agreed-upon XML Schema type. For instance, different, possibly 
international Web services used in SmartWeb might have different assumptions 
about the currency and taxation details. Semantic management, which could 
automatically compare communication inputs and outputs according to a more 
detailed ontology, would help to prevent unexpected behavior here. 

Note that a developer who uses Web services wants to check at development 
time whether some incompatible configuration exists. While a 100% solution, 
such as required for full automation, will remain unfeasible in most cases, 
ticking of 80% of problematic situations by semantic support is a very desirable 
feature of semantic management. 

Who: Developer 
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What for: Configuration management 
When: Development time 
Which aspects: Semantic API description 

Relating Communication Parameters 
This use case is again motivated by e-business policies. Let us assume that every 
Web service provider in SmartWeb must be IS0  9000 certified. Enforcing this 
policy requires correlating communication paths with information about the 
organizations operating the communication endpoints. Another example would 
be a policy stating that confidential information should only be sent across a 
secure communication channel. In this case, knowledge about message payload 
types, such as credit card information, must be connected with the properties 
of the underlying transport. 

Who: Developer, Administrator 
What for: Configuration management 
When: Development and deployment time 
Which aspects: Service profile 

Monitoring of Changes 
A system no longer being under the tight control of a single organizational 
unit will definitely be prone to service versioning issues. Updating a single 
part already requires close cooperation between the parties involved and this 
will, without a doubt, be much harder in Web services based applications. 
Consequently, semantic management should provide support for this issue by 
monitoring the providers' service interface definitions, security or transactional 
settings. 

Who: Developer 
What for: Configuration management 
When: Development time 
Which aspects: API description 

Aggregating Service Information 
Services will often be implemented based on other services. A service provider 
publishes information about its service. This might include service level agree- 
ments indicating a guaranteed worst-case response time, the cost of the service, 
or average availability numbers. The service requestor, in this case a composite 
service under development, can collect this information from the respective ser- 
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vice providers. In turn, it offers a service and needs to publish similar numbers. 
We envision semantic management to support the developer and administrator 
with this task by providing a first cut of this data by aggregating the data gath- 
ered from external providers. For sequential invocations, cost and time must be 
added. If services are invoked in parallel, cost is added and the time will be the 
maximum time one has to wait for an external call. Consequently, the respective 
queries must consider the local program or flow structure when performing the 
aggregation. The computation results could be used as default values, which can 
be overridden manually by the administrator (cf. also [Cardoso et al., 20041). 

Similar to the statements given in [Lord et al., 20041, we argue that full au- 
tomatic generation of such data will probably yield unwanted and inappropriate 
results. We see the computation results as an estimate which can be overridden 
manually by the administrator. 

Who: Administrator 
What for: Accounting management 
When: Deployment time 
Which aspects: Service profiles (quality of service information) 

Quality of Service 
While the previous use case was based on data gathered from service providers, 
one might want to obtain his or her own statistics on the reliability and avail- 
ability of business partners' IT infrastructure. Assuming the system is aware 
of potential endpoints implementing a required service, these endpoints can be 
pinged regularly. If an actual request arrives, aggregated availability informa- 
tion can be used to direct subsequent requests to one or the other third party 
service. 

Likewise, a provider needs to make sure it offers an adequate service level 
for its customers. In case of performance bottlenecks, it might have to make 
an educated decision on which jobs to grant higher priority and which job to 
drop or decline. Existing service level agreements and, of course, the respective 
penalties play an important role here. 

The up and coming technology of virtualization - currently provided by VM 
Ware and Microsoft Virtual Server - makes this issue much more important. 
Virtual machines, prepared to provide a certain service, can be started, stopped, 
suspended or even cloned on the fly. Thus, one can make quick and flexible 
decisions on what service to provide on the available bare metal servers at one's 
disposal. With the base technology in form of virtualization being available, it 
is important to provide the necessary intelligence for controlling the technology. 
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Obviously, new developments in the area of Grid Computing further empha- 
size this point, since the grid will provide new mechanisms for scheduling tasks 
and for outsourcing IT services in general. 

Who: Administrator, System 
What for: Performance management 
When: Run time 
Which aspects: Service profiles (quality of service information) 

3. Summary 
In this chapter we have proposed the semantic management of software com- 

ponents and Web services that trades off between modelling and management 
efforts (Main Question I: How tofind a good trade-off between modelling and 
management efforts?). The trade-off point has been approached by identifying 
a set of use cases. Each of them responded to the Questions 1.1 who uses the 
semantic descriptions?, 1.2 what are they used for?, and 1.3 when do they occur? 
The use cases propose the facilitation of some typical management tasks by a 
justifiable modelling efforts. The modelling requirements of the use cases also 
give us clear indications of what concepts a suitable management ontology must 
contain (Question 1.4: Which aspects should be formalized by our ontology?). 
The organization of these concepts in an appropriate management ontology is 
the subject of Part 11. 



PART I1 

DESIGN OF A MANAGEMENT ONTOLOGY 



Chapter 5 

ANALYSIS OF EXISTING ONTOLOGIES 

In the previous chapter we have approached the trade-off between modelling 
and management efforts. We have identified use cases where semantic de- 
scriptions of components and services can be exploited to automate some of 
the typical management tasks. The use cases in Chapter 4, Section 2 let us 
derive a set of modelling requirements for choosing the aspects our ontology 
should formalize. Regarding the application server use cases starting on page 66 
we have derived the following modelling requirements: (i) libraries, licenses, 
component profiles, component taxonomies, API descriptions, semantic API 
descriptions, access rights and workjow information of software components. 
Regarding the Web services use cases starting on page 70, we have to model ser- 
vice profiles, service taxonomies, access rights, policies, workjow information, 
API descriptions, as well as semantic API descriptions of Web services. 

The modelling requirements are the input to this part of the document which 
is concerned with the Main Question I1 from the Introduction: How to build a 
suitable management ontology? Our goal is to arrive at a high-quality manage- 
ment ontology with reference, heavyweight and core characteristics (cf. Figure 
5.1). We opt for a reference ontology because our first investigation of the 
domain of software components and Web services in Chapter 2, Section 3 al- 
ready revealed that a careful and rigorous ontological modelling is necessary. 
We encountered fundamental ontological questions that demand a concise ex- 
planation of concepts such as software component or Web service. In turn, 
such a concise explanation typically requires heavyweight expressiveness to 
approximate the intended models as closely as possible. Finally, the ontology 
should be as specific as possible, but should not reflect the idiosyncracies of a 
concrete platform. In this way, we facilitate reuse in concrete platforms because 
it is expected that concepts and associations can be specialized to capture the 
platform details. This requirement coincides with core specificity. 



SEMANTIC MANAGEMENT OF MIDDLEWARE 

Figure 5.1. The goal of Part I1 is to design a management ontology with reference, heavyweight 
and core characteristics (cf, classification in Chapter 3, Section 2). 

Before modelling a management ontology from scratch, it is desirable to 
check if there are existing ontologies that we might reuse for our purpose (Ques- 
tion 11.1 : Can an existing ontology be reused for our purposes?). This chapter 
analyzes two commonly built ontologies. In Section 1 we review one of the 
earliest and most prominent Web service ontologies, viz., OWL-S. Section 2 
talks about our own initial ontology of software components - one of the first 
efforts to semantically enhance application servers. It uses OWL-S as a basis, 
but extends and adopts it to model the idiosyncracies of software components. 
Finally, Section 3 inspects both ontologies and discusses their problematic as- 
pects with respect to the ontology quality criteria we introduced in Definition 
3.8 on page 41. A first conclusion is that both ontologies are a big step forward 
and that their reuse is possible in principle. However, both ontologies exhibit 
shortcomings that stand in conflict with our goals of having a high-quality, ref- 
erence and heavyweight ontology. We claim that their shortcomings are typical 
for commonly built ontologies. A second conclusion is that most of the prob- 
lems could have been avoided if a foundational ontology had been used as a 
modelling basis. 

Parts of this chapter have been published in conference proceedings. The 
introduction to OWL-S is taken from the DAML Services initiative [Martin 
et al., 20041. The initial ontology of software components is taken from [Oberle 
et al., 2003b, Oberle et al., 2003c, Sabou et al., 20041. The analysis of their 
problematic aspects was done in [Mika, Oberle et al., 2004aI. 
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1. OWL-S 
OWL-S has been an initiative of the Semantic Web community to enable 

automatic discovery, invocation, composition, interoperation and monitoring 
of Web services through their semantic descriptions [Martin et al., 20041.' 
At the heart of this effort lies an ontology formalized in the OWL language 
[McGuinness and van Harmelen, 20041. Its structuring is motivated by the need 
to provide three essential types of knowledge about a service, each characterized 
by the question it answers: 

What does the service provide for prospective clients? The answer to this 
question is given in the Ser~iceProfile.~ It is used to advertise the service. 
The intention is to allow an agent to determine whether the service meets its 
needs. This form of representation includes a semantic description of inputs 
and outputs, preconditions and postconditions, as well as explanations in 
natural language. It allows associating the service with given classification 
and product schemes (e.g., the NAICS~ and UNSPSC~ categories). As an 
example, we might semantically describe a Web service for validating a 
credit card by stating that its input is a credit card number and its output is 
the result of the validation. Both would be concepts of an according domain 
ontology. 

How is it used? The answer to this question is given in the ServiceModel. It 
tells a client how to ask for the service and what happens when the service is 
carried out. For composed services (i.e., services invoking other services), 
this description may be used by an agent to coordinate the activities of 
the different participants during the course of the service enactment or to 
monitor the execution of the service. If our credit card validation service 
is composed of other services, the ServiceModel allows us to describe 
when and how the other services are invoked. This comes close to typical 
workflow descriptions made up of control constructs such as if-then-else, 
while, etc. 

How does one interact with it? The answer to this question is given in the 
ServiceGrounding. It specifies the details of how an agent can access a 
service. Typically a grounding specifies a communication protocol, message 

'OWL-S was formerly called DAML-S as it is an outcome of the DAML program. After the standardization 
of the Web Ontology Language (OWL), it was renamed OWL-S (cf. ht tp:  //www.daml . org/services/  
owl-s/). 
2 ~ h e  reader may note that we use a sans serif font to denote names of ontologies, concepts and associations 
throughout Part 11. 
3 ~ o r t h  American Industry Classification System (NAICS), cf. ht tp:  //www . census. gov/epcd/www/ 
naics.htm1 
4~ni ted  Nations Standard Products and Services Code (UNSPSC), cf. ht tp:  //www . unspsc . org/ 
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formats and other service-specific details, such as port numbers. At the 
moment, there is only one grounding to align the semantic description with 
WSDL interface descriptions. In our example, we would map the credit card 
number as semantically described input to the respective WSDL parameters. 

The ontology modules ServiceProfile, ServiceModel and Service- 
Grounding correspond to the three types of knowledge introduced above. Each 
module features a rich set of concepts and associations. Ontology modules are 
different from ontologies in that they depend on other ontologies or on other 
modules. An ontology module MI depends on M2 if it specializes concepts 
of M2, has associations with domains and ranges to M2, or reuses its axioms. 
The three modules of OWL-S are linked to the Service module via presents, 
describes and supports associations. As depicted in Figure 5.2, the Service 
module acts as a container holding together profile, model and grounding in- 
f~ rmat ion .~  It basically consists of a concept of the same name which is to be 
instantiated for any service description. 

I I . / 

Figure 5.2. The OWL-S Service ontology module as UML class diagram. Classes represent 
concepts and arrows represent associations. Specializations of ServiceProfile, ServiceModel 
and ServiceGrounding are placed in their corresponding ontology modules. 

presents , nl' , , 4  SUP^ , 

The details of profiles, models and groundings may vary widely from one 
type of service to another. But each of these three service perspectives provides 
an essential type of information about the service. There are several interesting 
design principles underlying OWL-S [Sabou et al., 20041: 

Service 

v 

Layering of Descriptions OWL-S is intended to provide a layer on top of 
existing WS * descriptipns. The ServiceGrounding module provides a 
mapping between WSDL and OWL-S, thus facilitating flexible associations 
between them. For example, a certain semantic description can be mapped to 
several WSDL descriptions if the same semantic functionality is accessible 
in different ways. The other way around, a certain WSDL description can 

/ 
\ I 

prescntedBy descr ed by suppo edBy 
desc ibes 

S ~ e  visualize ontologies via UML class or object diagrams throughout the document. 

ServiceProfile ServiceModel ServiceGrounding 
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be mapped to different semantic descriptions offering different views of the 
same service. 

Core vs. Domain Knowledge The second principle which underlies the de- 
sign of OWL-S is the separation between core and domain knowledge. 
OWL-S can be considered a core ontology offering a set of primitives to 
semantically describe any type of Web service. These descriptions can be 
enriched with domain knowledge specified in a separate domain ontology 
module (e.g., by specializing the concepts of the ServiceProfile in a do- 
main profile). This modelling choice allows using the set of primitives 
across several domains just by varying the domain knowledge. 

Modularity Another feature of OWL-S is the partitioning of the description 
over several ontology modules, as we have learned before. There are several 
advantages of this modular modelling. First, since the description is split 
up modules it is easy to reuse specific parts. Second, service description 
becomes flexible as it is possible to specify only the part that is relevant 
for the service (e.g., ServiceModel and ServiceGrounding can be omit- 
ted). Finally, OWL-S descriptions are easy to extend. If concepts are not 
detailed enough for a specific application domain one can specialize them 
in a separate ontology module. 

In essence, we could reuse and extend OWL-S to capture at least the man- 
agement aspects of Web services. OWL-S was a big step forward and features 
design principles that are suitable also for our use. Despite the advantages, 
however, OWL-S has several problematic aspects that endanger our goals of 
having a high-quality, reference and heavyweight ontology. Before discussing 
the problematic aspects in Section 3, we have a closer look at our own initial 
ontology of software components which has been based on OWL-S. 

2. Initial Ontology of Software Components 
In this section we briefly describe our initial ontology of software components 

for the semantic enhancement of an application server. In [Oberle et al., 
2003b, Oberle et al., 2003c, Sabou et al., 20041 we derived the following 
ontology requirements based on scenarios: 

R1 Interface Description and Code Details The ontology should contain 
means to model the interface description of software components, as well 
as relevant code details (version, required libraries, etc.). 

R2 Component Profiles The ontology should contain means to model a soft- 
ware component's profile, i.e., the semantics of inputs and outputs in terms 
of the ontology, their classification according to a given taxonomy or infor- 
mation about the component provider. 



84 SEMANTIC MANAGEMENT OF MIDDLEWARE 

R3 Consideration of Existing Efforts It was our intention to consider exist- 
ing ontologies and reuse them whenever possible. If the ontology resembles 
a well-known one, we might keep the learning curve low. 

R4 Domain Independence The ontology should be reusable over a wider 
range of domains; therefore we should separate core and domain specific 
concepts. 

In line with requirement R3, we have used OWL-S as a starting point for 
our ontology. The design principles underlying OWL-S fit our purposes nicely, 
e.g., its separation of core and domain knowledge corresponds to requirement 
R4. Below we discuss the resulting ontology design. We have reused three of 
the four ontology modules OWL-S introduced, adapted them for our purposes 
and added further modules. Figure 5.3 compares both ontologies. 

Specificity 
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Figure 5.3. The ontology modules of OWL-S in comparison with the modules of the initial on- 
tology of software components as UML package diagram. Packages represent ontology modules 
and dotted arrows represent dependencies between modules. An ontology module M1 depends 
on Mz if it specializes concepts of Mz, has associations with domains and ranges to M2 or 
reuses its axioms. WSDL is not represented as package because it is not an ontology module. 

Softwarecomponent This module is similar to OWL-S Service. However, 
we performed some changes: (i) We have renamed the Service concept to 
Softwarecomponent, as components are the software building blocks to 
be described. (ii) We have excluded the link to the ServiceModel module, 
since we are not interested in workflow information. (iii) We have replaced 
the ServiceGrounding by the newly introduced IDLGrounding ontology 
module which provides a mapping to components' interface descriptions. 
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ComponentProfile We have reused the OWL-S ServiceProfile module and 
renamed it ComponentProfile. It allows specifying the specific character- 
istics of a Softwarecomponent. In order to grasp the semantics of inputs 
and outputs we have added links to the APlDescription module that groups 
the information used to describe an API and is separated in a module of the 
same name. We separated it because we expect that components are able to 
reuse API descriptions (much more than the remaining profile information). 

APlDescription As discussed above, the APlDescription module comple- 
ments the ComponentProfile by semantically describing the functionality 
offered by methods of API's and for classifying API types. In essence, the 
module introduces concepts such as API, Method, Input and Output and 
links them with associations. They can be specialized in terms of domain 
ontology concepts (see below). 

IDLGrounding The IDLGrounding module provides a mapping between the 
APlDescription and the interface description captured by the IDL mod- 
ule. Thus, it resembles the OWL-S ServiceGrounding that maps between 
a semantic service description and existing WSDL interface descriptions. 
The mapping is straightforward: concepts InterfaceGrounding , Method- 
Grounding, InputGrounding and OutputGrounding map between respec- 
tive concepts from the APlDescription and IDL modules. 

Implementation This module contains implementation level details of a 
component and, thus, responds to requirement R1. There are two aspects 
of the implementation: (i) CodeDetails that describe characteristics of the 
code, such as the class that implements the code, the required libraries or 
the version of the code. All these aspects are modelled as associations of 
the CodeDetails concept. (ii) The interface description. The name of the 
methods and their parameters are modelled using the module presented next 
(IDL). 

IDL We have formalized a small subset of the IDL (Interface Description Lan- 
guage [Object Modelling Group, 20021) specification into an ontology mod- 
ule that allows describing signatures of interfaces. The Interface concept 
corresponds to a described interface. It features an association called has- 
Operation which points to an Operation instance. Each Operation can 
have a set of (input) parameters of a certain type. Also, each Operation 
returns an OperationType. 

Domain Ontologies We can build domain ontologies that specialize two of 
the modules presented above. By isolating domain knowledge in separate 
modules, we conform to requirement R4 (Domain Independence). On the 
one hand, DomainProfiles may distinguish several categories of software 
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components and propose a set of characteristics for each category. These 
characteristics can be used as a framework for comparing components. On 
the other hand, DomainAPlDescriptions may introduce a set of common 
API's and methods. For example, one can declare a DatabaseAdapterAPl 
concept and define it as providing a retrieveData method and a storeData 
method. The intention is that such information allows performing a flexible 
search over the existing API's at development time. 

Table 5.1 shows the relationship between requirements and ontology mod- 
ules, confirming the major influence that these requirements had on our design. 
Much like OWL-S, we could reuse and extend this ontology to capture at least 
the management aspects of software components. However, OWL-S features 
several problematic aspects that endanger our goals of having a high-quality, 
reference and heavyweight ontology. It does not come as a surprise that our 
initial ontology of software components inherits similar problematic aspects as 
OWL-S because it is based on OWL-S. We elaborate on the problematic aspects 
in the following section. 

Table 5.1. Dependencies between requirements and ontology modules. 
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R3 Consideration of existing efforts 

3. Problematic Aspects 
This section identifies and illustrates some of the problematic aspects of 

OWL-S and our initial ontology of software components from the perspective 
of the ontology quality criteria introduced in Definition 3.8 on page 41. As the 
latter is derived from the first, the problems that the two exhibit are similar. 

For each of the four problematic aspects, viz., conceptual ambiguity, poor 
axiomatization, loose design, narrow scope, we present examples and suggest 
improvements. The conclusion is that many problems could have been avoided 
by exploiting a high-quality foundational ontology as a modelling basis. 
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3.1 Conceptual Ambiguity 
When it is difficult for users to understand the intended meaning of concepts, 

the associations between these concepts, as well as how they relate to the mod- 
elled entities, we speak of conceptual ambiguity of an ontology. The reason 
for conceptual ambiguity in our case is that the underlying logical theory is 
not complete enough. Furthermore, some concept definitions are too precise 
(despite the fact that the ontology is not precise enough in general, as we learn 
in 3.2 and 3.3). 

Examples. Conceptual ambiguity in OWL-S particularly affects the notion of 
a service which is introduced in [Martin et al., 20041 as follows: "By 'service' 
we mean Web sites that do not merely provide static information, but allow 
one to effect some action or change in the world, such as the sale of a product 
or the control of a physical device." Later, we read that "any Web-accessible 
program/sensor/device that is declared as a service will be regarded as a service." 

However, neither of these definitions is formalized since neither the concept 
of a "Web site" nor the "Web appears in the ontology. This is where OWL- 
S is not complete enough, i.e., its vocabulary lacks terms used in the natural 
language definition. Instead, the notion of a service is characterized solely by 
its relationship to a number of ServiceProfiles, at most one ServiceModel 
and any number of ServiceGroundings, which is not sufficient to understand 
the concept of Service considered by OWL-S. This prevents us from consider- 
ing alternative ServiceModels, or from evaluating the relationship between a 
ServiceModel required by a customer's guideline, or by a legal regulation and 
the one underlying the provider's system, for instance. Thus, OWL-S actually 
excludes intended models in this case, making it too precise in terms of our 
ontology quality criteria (cf. Definition 3.8 on page 41). 

The debates about the intended meaning of terms both within the OWL-S 
coalition and in public mailing lists6 were plentiful. The reason is that terms 
such as Web service and closely related terms (e-Service, Service, etc.) typically 
suffer from overloading. In our search for possible formalizations, we found a 
variety of definitions emphasizing different aspects of a service [Gangemi et al., 
2003bl: offering functionality (usefulness for a specific task) or interoperability 
using standards or providing an interface to an existing system. We also refer 
the reader to the work of [Baida et al., 20041, which compares and contrasts 
the definitions used in the business literature, in software engineering and in 
information sciences. 

In our initial ontology of software components we find a similar dilemma 
regarding the plethora of meanings and definitions of terms such as component, 

%f. http: //WWW. dam1 . org/services 
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software component or software module. The ontology fails to convey its 
intended meanings of such terms and leaves the interpretation to the ontology 
user. 

Suggested Improvement. Even if there are several ways to formalize con- 
cepts such as service or component, using a foundational ontology as a mod- 
elling basis would allow comparison between alternative definitions and foster 
discussion about alternative conceptualizations. Using a foundational ontol- 
ogy as a modelling basis means relating the concepts and associations of an 
ontology to the basic categories of human cognition investigated by philoso- 
phy, linguistics or psychology. This prompts the ontology engineer to sharpen 
his notions with respect to the distinctions made in the foundational ontology. 
What is typically gained is an increased understanding of one's own ontology. 

3.2 Poor Axiomatization 
Both OWL-S and the initial ontology of software components are typical ap- 

plication ontologies, i.e., they are to be used at run time for reasoning purposes. 
Hence, it is important that each concept is characterized by an axiomatization 
in order to support meaningful inferences. Unlike the problem mentioned in 
the previous section, poor axiomatization reflects the lesser problem when the 
definition of concepts is clear, but axiomatization in the ontology itself needs 
improvement (in order to make it more precise). In particular, we believe that 
the level of axiomatization in OWL-S needs to be raised if it hopes to support 
the complex reasoning tasks put forward by its coalition. 

Examples. In both ontologies there is no firm concept or association hierar- 
chy. That means that most concepts and associations are direct subconcepts of 
the top level concept (ow1:Thing) or association (owl:Property), and that sev- 
eral associations declare ow1:Thing as their domain or range. In essence, there 
is not much more than the concept hierarchy and domain and range restrictions. 
Therefore, reasoning is limited to subsumption checking and domain and range 
inferencing, although further reasoning could be usefully employed. 

To give a concrete example: ControlConstructs in OWL-S are used to de- 
fine how composite processes are combined together. Typical specializations 
are Sequence,  Split, Choice or If-Then-Else. The components associa- 
tion relates ControlConstructs to lists or bags of further ControlConstructs 
or invocations of other processes. In OWL-S, the components association is 
described merely as a specialization of ow1:Property with adomain of Control- 
Construct. It would be desirable to concisely axiomatize this association in 
order to support more meaningful consistency checks. We could axiomatize 
its mereological and temporal properties, e.g., being a functional and temporal 
proper part of a ControlConstruct. Both properties could be further charac- 
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terized with formal restrictions on its application to other basic concepts, such 
as objects or events. 

Suggested Improvement. The level of axiomatization can be increased by 
using a foundational ontology as a modelling basis. By specializing concepts of 
the foundational ontology, its extensive axiomatization is automatically inher- 
ited. It also promotes reuse by highlighting commonalities, which especially 
helps to reduce the proliferation of associations that is typical for application 
ontologies. 

As an example, foundational ontologies typically incorporate precise theories 
for plans, formalizing constructs that are directly comparable to the Control- 
Constructs of OWL-S, but provide a higher level of axiomatization. Such 
a predefined theory could be leveraged in our case. Higher axiomatization 
can also be leveraged by the links to a theory of time - another theory often 
included in foundational ontologies - for describing constraints on temporal 
relations between process elements when they are executions of a plan. OWL-S 
would also need such an ontology of time. Then, it would be natural to adopt 
or reference an existing ontology instead of creating an ontology from scratch. 

3.3 Loose Design 
A further problematic aspect from an ontologist's point of view is the loose 

design of both ontologies. The reason for loose design is, amongst others, 
inherited by the limitations of the representation language's expressiveness, 
i.e., the ontologies are not precise enough. 

At the heart of this problem lies the fact that both ontologies try to provide 
descriptions of components and services to support a number of different tasks 
(e.g., component or service discovery, composition, invocation). Besides the 
functional dimension, such descriptions should be contextualized to represent 
various points of view, possibly with different g r a n ~ l a r i t ~ . ~  Most of these views, 
however, are overlapping in that they concern some of the same attributes of a 
component or service. 

A straightforward modularization in such cases results in an entangled ontol- 
ogy, where the placement of specific knowledge becomes arbitrary and intensive 
mapping is required between modules. This phenomenon is well described in 
object-oriented design, where the notion of aspects [Elrad et al., 20011 was 
recently proposed to encapsulate concerns that cross-cut the concept hierarchy 
of a software. 

7 ~ h e  OWL-s specification mentions the ability to use the Serviceprofile for providing such views. However, 
no actual constructs are provided to map them to possible service executions or to each other. 
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Examples. A case in point is the application of attribute binding in OWL-S. 
The construct of attribute binding is necessary in OWL-S to express, for exam- 
ple, that the output of a process is the input to another process or that the output 
of a composite process is the same as the output of one of its subprocesses. In 
programming, such equivalences are expressed by the use of variables. Vari- 
ables are governed by the rules of scoping, which define the boundaries of 
commitment. 

Since OWL lacks the notion of variables, attribute binding is expressed by the 
Binding concept which is attached to a Process (cf. Figure 5.4). The Binding 
contains instances of the valueof concept. The valueof concept points to a 
Process and to one of its inputs or outputs via the fromProcess and theVar 
associations, respectively. For example, in case of two processes A and B where 
B takes the output of A as an input, the Binding would point to the Input of 
B via toparam. In addition, a corresponding valueof instance would point to 
the Process A and the Output of A. 

The reader may note that the intended meaning of the entire construct, 
namely, the equivalence of B's input and A's output, is not encoded in the ax- 
iomatization. This is explained by the lack of expressiveness of the description 
logic used. 

Figure 5.4. The representation of attribute binding in OWL-S as UML object diagram. Concept 
instances are represented by objects and instantiated associations by object relations. 

I 

The representation of attribute binding is only one example where we find 
modelling artifacts in OWL-S. Modelling artifacts are concepts and associations 
that do not bear ontological meaning, but are introduced because of unfortunate 
ontology design or because of limitations of the representation language. 

A closer look at our initial ontology of software components also reveals 
the existence of modelling artifacts. For example, we can find the concept 

Process B Binding 
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Parameter two times. One is introduced in the IDL module for modelling the 
interface description. Another is introduced in the APlDescription module 
for its semantic description. Both model the same information object, yet in a 
different context. The concepts Method in the APlDescription and Operation 
in IDL demonstrate that this problem is not limited to equally named concepts. 

Suggested Improvement. The use of contextualization as an ontology design 
pattern would allow us to move from a monolithic description to the represen- 
tation of different, possibly conflicting views with various granularity. Some 
foundational ontologies incorporate such design patterns or offer them as ad- 
ditional theories. They provide the basic primitives of context modelling such 
as the notion of roles, which allows us to talk about inputs and outputs on the 
abstract level, i.e., independent of the objects that play such roles, for instance. 

Using the ontology design pattern of contextualization results in a much more 
intuitive representation of attribute binding, with clearly defined semantics and 
scoping. Inputs and outputs can be modelled as functional roles, which serve 
as variables in our ontology. A single object - for example, a physical book 
- can play multiple roles within the same or different descriptions, and, thus 
it is natural to express that the given book is output with respect to one process, 
but input to another. Moreover, it is easier to represent the requirement that 
the input of a process has to be played by the same instance as the output of 
another process by putting constraints on the objects (and not the process or 
task) which play these roles (however, the expressiveness required is the same 
and, therefore, goes beyond the expresiveness of OWL DL). 

3.4 Narrow Scope 
Web services may carry out operations to support a real-world service, e.g., 

the ordering of goods. Thus, Web services exist on the boundary of the world 
inside an information system and the external world. Functionality, which is an 
essential property of a service, then arises from the entire process that comprises 
computational, as well as real-world activities. Web service descriptions are 
thus necessarily descriptions of two parallel worlds. In an information system, 
the world consists of software manipulating (representations of) information 
objects. Activities are sequenced by computational processes. Meanwhile in 
the real world, goods are being delivered to their destinations. The connec- 
tion between these worlds is that some of the information objects represent 
real-world objects. Also, computational activities comprise part of the service 
execution in the real world. For example, an order needs to be entered by the 
Web agent into an information system, so that a warehouse knows which goods 
to deliver to a given address. 

The scope of OWL-S needs to be extended to represent real-world services 
that naturally cross the lines between information systems and the physical 
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world. While OWL-S acknowledges this aspect of services, it is unclear how a 
distinction could be made between the objects and events within an information 
system (regarding data and the manipulation of data) and the real-world objects 
and events external to such a system. 

Such a narrow scope is a result of the ontology not being complete and 
accurate enough. Although the case of real-world activity descriptions is of 
less relevance for software components, narrow scope is a problem in both 
ontologies. 

Examples. It is hard, if not impossible, to distinguish among a physical object 
(e.g., a credit card), an information object (e.g., a credit card number) and a rep- 
resentation of such information using a specific description system (e.g., a string 
encoding) in OWL-S. In one of its use cases,8 we find a concept CreditCard- 
Type, directly inherited from owl:Thing and defined as an enumeration con- 
sisting of Mastercard, AmericanExpress, VISA and Discovercard. The 
interpretation is left to the ontology user, whether it is the physical or the infor- 
mation object that is modelled. 

We can find a very similar example in our initial ontology of software compo- 
nents, where a concept User is specialized directly from the top-level concept. 
One can only guess whether it is the natural person, a role played by the natu- 
ral person, or his or her informational counterpart. It would be worthwhile to 
explicate such differences, e.g., when we want to infer the total of access rights 
granted for a natural person who might have several user accounts in and across 
information systems. 

We are able to explain this problem by means of our ontology quality criteria 
introduced in Definition 3.8 on page 41 : the ontology is not complete enough (its 
vocabulary is not rich enough to capture the difference) and it is not accurate 
enough (its universe is exclusively limited either to physical users or to the 
corresponding information objects). 

Suggested Improvement. We believe that this distinction is important for 
disambiguating the nature of services and components. This especially holds 
for semantic descriptions of Web services in the context of the Semantic 
The separation would naturally follow from the use of a foundational ontology, 

8~ fictitious Web shop, called Congo.com, cf, http: //www . dam1 . org/services/owl-s/i . I/ 
examples. html. 
9 ~ n  fact, the lack of this distinction stands behind the emergence of the "Semantic Web identity crisis" that 
results from the ambiguous use of identifiers in Semantic Web ontology languages such as RDF [Pepper 
and Schwab, 20031. In practice, a URI can be used to reference a document on the Web, either to reference 
(a fragment of) a document containing some definition of a concept or to represent a concept (without any 
intended reference to an actual location on the Web). Unfortunately, no standard scheme exists to distinguish 
among the three kinds of identifiers even though they need to be resolved in different ways. 
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where the distinction is an important part of the characterization of concepts. 
In particular, it makes it possible to be more specific about the kinds of rela- 
tionships that can occur among objects or between objects and events. Using 
a foundational ontology, it is possible and even required for the creator of a 
description to make such distinctions because they fundamentally affect the 
ontological nature of the objects and events concerned. 

4. Summary 
In this chapter we have analyzed whether existing ontologies are suitable 

for our purposes, thus answering the Question 11.1: Can an existing ontology 
be reused for our purposes? We have inspected one of the earliest and most 
prominent Web service ontologies, viz., OWL-S, as well as our own initial 
ontology of software components. We conclude that both are a big step forward 
with design principles suitable also for our purposes. Their reuse is possible in 
principle. However, both ontologies exhibit shortcomings that stand in conflict 
with our goals of having a high-quality, reference and heavyweight ontology. 
Their problems are very common also in more recent efforts (some of them are 
discussed in the related work chapter). We further conclude that most of the 
problems could have been avoided if a foundational ontology had been used as 
a modelling basis. Thus, the remainder of this part designs a new management 
ontology on the basis of a foundational ontology. 



Chapter 6 

THE APPROPRIATE 
FOUNDATIONAL ONTOLOGY 

In the previous chapter we have analyzed whether existing ontologies can 
be reused and adapted for our purposes. We have had a closer look at OWL-S 
and our own initial ontology of software components. Although their reuse 
is possible, we would inherit severe problems that stand in conflict with our 
goals of high quality, reference purpose and heavyweight axiomatization. Their 
shortcomings have called for the use of a foundational ontology. 

Redesigning OWL-S and our initial ontology of software components with 
a foundational ontology as a basis is a dilemma between improving their prob- 
lematic aspects and keeping as much of the original structure as possible. As 
discussed in [Mika, Oberle et al., 2004a1, the result is an ontology of higher 
quality, but with many "leftover" concepts of the original ontologies that com- 
plicate its usage. Therefore, this chapter marks the starting point for building 
a management ontology anew as it opts for an appropriate foundational ontol- 
ogy. In lack of an established standard, we follow the strategy to first identify 
requirements in terms of suitable ontological choices the foundational ontol- 
ogy should reflect (cf. Section I). Suitable ontological choices are implicitly 
given by the domain we want to model. Furthermore, the analysis of problem- 
atic aspects of OWL-S and our own initial ontology of software components 
yields additional requirements. Section 2 briefly discusses the alternatives, i.e., 
the most prominent foundational ontologies, with respect to the requirements. 
After comparing the foundational ontologies, we conclude that the DOLCE 
foundational ontology is the primary choice for our purposes (Section 3). 

Most of the chapter resembles [Oberle et al., 2004b1, an internal project 
report, where we advanced similarly in choosing an appropriate foundational 
ontology. Bits and pieces of the ontologies' introductions are taken from [Varzi 
and Vieu, 20041 and [Borgo et al., 2002, Masolo et al., 2002, Masolo et al., 
20031. 
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1. Requirements for Ontological Choices 
Finding the appropriate foundational ontology is dependent on the universe 

of discourse we want to model, as well as the use cases and target users. In 
our case, several aspects of software components and Web services are to be 
modelled. This yields the requirements for ontological choices listed below. 
Some of them are mandatory, whereas others are optional. 

Descriptive We should aim at a descriptive ontology that captures the onto- 
logical categories underlying natural language and human common sense. 
Reading, creating and understanding semantic descriptions must be as in- 
tuitive as possible for the developer. Being descriptive is a mandatory re- 
quirement because revisionary ontologies, which model the intrinsic nature 
of the world, would complicate those tasks. 

Multiplicative The appropriate foundational ontology should provide a clear 
and detailed treatment of objects and properties assuming that different enti- 
ties can be co-located in the same space-time. The multiplicative approach 
is optional because we assume it to be more intuitive. The human user 
usually tends towards a multiplicative recognition. 

Possibilism The examples of software components and their dependencies on 
page 36 (Chapter 3, Section 1) already provide evidence that modalities 
come in handy as a modelling primitive. Using a modal logic means com- 
mitting to possibilism and provides us with a powerful means with respect 
to expressiveness. Basically, possibilism is desirable, but not mandatorily 
required. 

Perdurantism The ability to model 4D entities, i.e., perdurants, is of central 
importance for our ontology, and, thus, a mandatory requirement. For ex- 
ample, when we want to model workflow information by computational 
activities (which would be perdurants in this case). 

The use cases of Chapter 4, Section 2, as well as the analysis of problematic 
aspects of OWL-S and our own initial ontology of software components (cf. 
Chapter 5, Section 3) yield additional requirements that particularly affect the 
extrinsic properties: 

Executable Language Our goal is to arrive at a core ontology with heavy- 
weight axiomatization and reference purpose. Its intended models should 
be approximated as concisely as possible to achieve high quality. However, 
we should already take into account that we want to reason at run time 
eventually. Hence, the foundational ontology is mandatorily required to be 
available in a lightweight version, formalized in an executable language. 
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Modular As we learn throughout the chapter, some foundational ontologies 
feature a great number of concepts and associations, as well as an extensive 
axiomatization. If monolithic, choosing such an ontology as a modelling 
basis leads to over-commitment, i.e., the import of theories that will not be 
used later on. Hence, it is desirable, but not mandatorily required, that the 
appropriate foundational ontology consists of a minimal core and additional 
modules reflecting theories such as the three listed below: 

Theory of Contextualization The analysis of existing ontologies in Chapter 
5, Section 3.3 reveals the need for a concise theory of contextualization. It 
would allow us to move from an entangled, monolithic design to the rep- 
resentation of different, possibly conflicting views with various granularity. 
The existence of a theory of contextualization is optional because it could 
be formalized anew in principle. 

Theory of Plans One of the modelling requirements derived from the use cases 
in Chapter 4, Section 2 is to formalize workJow information of components 
and services. Foundational ontologies typically provide such modelling 
capabilities by theories of plans. We have learned in Chapter 5, Section 3 
that a rich axiomatization thereof would allow for meaningful inferences. It 
is desirable to reuse an existing theory, but not mandatorily required. 

Theory of Information Objects Another conclusion of the analysis in Chap- 
ter 5, Section 3.4 has been that a concise distinction between entities in 
an information system and the real world is required. Hence, an elabo- 
rated theory of information objects is another requirement. As with all the 
other theories, this one could also be formalized from scratch, making the 
requirement an optional one. 

2. Alternatives 
This section provides a brief description of the basic assumptions and 

methodologies considered in the most prominent foundational ontologies, 
namely BFO, DOLCE, OCHRE, OpenCyc and SUMO. In particular, we ana- 
lyze whether they meet the requirements put forward in the previous section. 

There are further ontologies that label themselves "upper-level" which we do 
not consider here for several reasons. In common literature we find particularly 
John Sowa's upper-level ontology [Sowa, 20001, as well as Russell and Norvig's 
upper-level ontology [Russell and Norvig, 19951. However, both are integrated 
in SUMO - one of the alternatives we consider below. 

Besides, there are several linguistic ontologies that are considered as upper- 
level sometimes. In that category we find the PROTON Upper module,' which 

'http: //proton. semanticweb. org/ 
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stems from a company called Ontotext, featuring several core and domain level 
concepts. Others are o ens us,^ a 70,000-node terminology taxonomy and exten- 
sion of WordNet, as well as Mikrokosmos3 and the Generalized Upper ~ o d e l . ~  
All of them are "linguistically motivated ontologies" expressing classes corre- 
sponding to existing natural language, and, thus, unsuitable for our purposes. 

2.1 BFO 
The BFO (Basic Formal Ontology) belongs to the Wonderweb library of 

foundational ontologies [Masolo et al., 20031. The goals of the library are 
to have: (i) starting points for building core and domain ontologies, (ii) a 
reference point for comparisons among different ontological approaches and 
(iii) a common framework for analyzing existing ontologies. 

BFO is mainly known for its application in the bio-medical domain. An 
essential feature is its separation into two ontology modules: SNAP and SPAN. 
Each module represents a specific view on reality, according to the level of 
granularity chosen by the modeler to catch certain aspects of the world. 

SNAP provides a set of all the entities existing in time to model "snapshots 
of reality." Such enduring entities are called Continuants in the case of BFO. 
They are categorized into Substantial Entities, Spatial Regions and Tropes. 
Substantial Entities are the bearers of properties and change, e.g., material 
objects, organs or portions of the atmosphere, and are further classified in 
Substances,  Boundaries, etc. Tropes can be considered as the qualities 
that inhere in Substantial Entities. Examples are the color of a tomato or 
the temperature of a body. Tropes are subdivided into Qualities, Functions, 
Conditions, etc. Finally, there are Spatial Regions which can be geographical, 
cosmological, anatomical or topographical, for instance. 

The SPAN module is a "catalogue" of perduring entities, called Occurants 
here, divided into Temporal Regions, Processes and Spatio-temporal Re- 
gions. Temporal Regions are pure temporal regions as opposed to Spatio- 
temporal Regions which include dimensions to identify the spatial location of 
an entity. Processes are happenings, occurring entities, or changes of various 
kinds in substantial entities, e.g., the raising of temperature, the acquisition of 
a social status, movements, activities, etc. Processes are further classified in 
Settings, Events, Aggregates, etc. Finally, Spatio-temporal Regions are 
the four dimensional regions of space-time. SNAP and SPAN are sketched in 
Figure 6.1 .5 

2http: //www . isi . edu/natural-language/resources/sensus . html 
3http: //www . csee . umbc . edu/"dinglil/student/cmsc691k/mikrokosmos. htm 
4http: //WWW. fbiO. uni-bremen. de/anglistik/langpro/webspace/jb/gum 
'we visualize pure taxonomies as trees, because they are better suited than UML class diagrams for this 
purpose. 
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Figure 6.1. BFO Taxonomy. 

BFO comes with a rich axiomatization in first-order logic without modali- 
ties, i.e., the ontology commits to actualism. Both 3D entities (Continuants) 
and 4D entities (Occurants) are considered, reflecting endurantism and perdu- 
rantism at the same time. Furthermore, BFO affirms that there are many views 
of reality which are equally veridical. These are views of entities in different 
domains, views of entities as seen from different perspectives or views of what 
exists on different levels of granularity (microscopic, mesoscopic, geographic). 
Thus, BFO commits to a reductionist stance with respect to co-localized en- 
tities. BFO assumes that reality and its constituents exist independently of 
our (linguistic, conceptual, theoretical, cultural) representations thereof. This 
position coincides with a revisionary ontological choice. 

There is no publicly available version of BFO in an executable representation 
language. Although BFO is minimal and split into two modules, there are no 
additional theories for contextualization, plans or information objects. 

2.2 DOLCE 
DOLCE belongs to the Wonderweb library of foundational ontologies as well 

[Masolo et al., 20021. It is intended to act as a starting point for comparing and 
elucidating the relationships with other ontologies of the library and also for 
clarifying the hidden assumptions underlying existing ontologies or linguistic 
resources such as WordNet [Miller et al., 19901. It has been successfully 
applied in different domains, such as law [Gangemi et al., 2004~1, biomedicine 
[Gangemi et al., 2004al and agriculture [Gangemi et al., 20021. 

DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) is 
based on the fundamental distinction between enduring and perduring entities. 
The main relation between Endurants (i.e., objects or substances) and Perdu- 
rants (i.e., events or processes) is that of participation: an Endurant "lives" 
in time by participating in a Perdurant. For example, a software compo- 
nent, which is an Endurant, participates in its lifecycle, which is a Perdurant. 
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DOLCE introduces Qualities as another category that can be seen as the basic 
entities we can perceive or measure: shapes, colors, sizes, sounds, smells, as 
well as weights, lengths or electrical charges. Spatial locations (i.e., a special 
kind of physical quality) and temporal qualities encode the spatio-temporal at- 
tributes of objects or events. Finally, Abstracts do not have spatial or temporal 
qualities and they are not qualities themselves. An example are Regions used 
to encode the measurement of qualities as conventionalized in some metric or 
conceptual space. The basic concept hierarchy is sketched in Figure 6.2. 

...  ti ... s& 
Interval Region 

Figure 6.2. DOLCE Taxonomy. 

As reflected by its name, DOLCE has a clear descriptive bi as, in the s ense 
that it aims at capturing the ontological categories underlying natural language 
and human common sense. DOLCE embraces the multiplicative approach: 
starting from the observation that one tends to associate objects to incompatible 
essential properties, DOLCE provides a clear and detailed treatment of objects 
and properties assuming that different entities can be co-located in the same 
space-time. DOLCE allows modelling 3D objects, i.e., Endurants, as well 
as 4D objects, i.e., Perdurants. Thus, it commits to both endurantism and 
perdurantism. 

DOLCE features a rich reference axiomatization in modal logic S5, thereby 
committing to possibilism. The axiomatization captures ontology design pat- 
terns such as location in space and time, dependence or parthood. Its core is 
minimal in that it only includes the most general concepts and patterns. This 
makes it well-suited for modularization. In fact, there is a wealth of additional 
theories that can be included on demand. Examples are Descriptions & Situa- 
tions for contextualization, the Ontology of Plans, the Ontology of Time or the 
Ontology of Information Objects [Gangemi et al., 2004bl. 
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DOLCE is unique in that it provides a lightweight version (called DOLCE 
Lite). Thus, the application of DOLCE-based ontologies becomes possible in 
description logics such as DAML+OIL [Horrocks and Patel-Schneider, 20011 
or OWL DL [McGuinness and van Harmelen, 20041. The reference axioma- 
tization has been adopted manually to fit the target language. Changes affect 
the DOLCE signature (associations may have the same name but different ari- 
ties and domains), modal operators (which had to be omitted) and temporally- 
indexed associations (which are partly rearranged as compositions with tempo- 
ral location associations). 

2.3 OCHRE 
OCHRE (Object-Centered High-level REference ontology) is the latest mem- 

ber of the Wonderweb library of foundational ontologies. In contrast to DOLCE 
and BFO, it puts strong emphasis on a clear and elegant mereological framework 
that gives a straightforward account of parthood relations between individuals. 
OCHRE does not offer the rich taxonomies of DOLCE. It has not been applied 
in real applications so far. [Schneider, 20031 

OCHRE is an ontology of perdurants (events and processes) and objects 
based on Tropes which are the mereological atoms out of which all denizens 
of reality are supposed to be built up. OCHRE gives a qualitative account of 
both objects and events as bundles of individual characteristics. Following the 
footsteps of Aristotle's metaphysics, OCHRE distinguishes between Thick and 
Thin Objects. Thick Objects are aggregations of Tropes that are extended in 
time and space. They are mereotopologically rigid, i.e., invariant in terms of 
composition and location. Change is reconstructed as the succession of such 
Thick Objects that share a same Thin Object. A Thin Object can be thought 
of as a core of essential properties that link a series of Thick Objects together. 

For example, the Tropes of a ripening tomato are its color, its mass, its shape, 
etc. The change of a ripening tomato just pertains to different Thick Objects 
representing the tomato and its Tropes. That means, the Thick Objects are 
wholes centered around the bundle of core characteristics, e.g., the tomato's 
DNA, represented by a Thin Object. That one speaks of the same object 
through change is grounded in the existence of Thin Objects. 

As depicted in Figure 6.3, OCHRE splits its entities in Tropes and Sums 
of Tropes. Tropes are the single characteristics of individuals which are tem- 
porally aggregated by Sums of Tropes. The latter are further specialized into 
Non Categorials and Categorials. As the name suggests, Non Categori- 
als cannot be further categorized because they comprise arbitrary Sums of 
Tropes. In contrast, Categorials can be further categorized in Abstract and 
Concrete Categorials distinguished by spatio-temporal extension. Abstract 
Categorials comprise the Thin Objects, as well as Guises (sums of single 
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Figure 6.3. OCHRE Taxonomy. 

Thin Objects and the Tropes dependent on them). Concrete Categorials 
comprise the Thick Objects, as well as Perdurants. 

OCHRE commits to ontological choices as follows: First, OCHRE adopts a 
revisionary approach because the distinction between Thick Objects and Thin 
Objects does not adhere to human common sense. Second, it is unclear if 
OCHRE adopts a reductionist stance. Though multiplying spatio-temporally 
co-located objects in OCHRE is avoided, it allows to distinguish between dif- 
ferent Guises of the same Thick Object. Therefore, the same Thick Object 
may contain more than one Guise, and, thus, more than one Thin Object. E.g., 
a vase contains at least three Guises: its "material" (i.e., a bundle of material 
characteristics such as density or mass), its "form" (i.e., a bundle of formal 
characteristics such as shape) and its "function" (i.e., characteristics pertaining 
to its use). Despite its insistence on topological extensionality, OCHRE allows 
the multiplication of "abstract," i.e., non-spatial, parts of the same spatial entity. 
This is possible since OCHRE adopts a qualitative account of objects. Third, 
OCHRE commits to endurantism, because it considers events and processes 
being constituted by successions of Thick Objects. Indeed, an event as a basic 
perdurant corresponds to some elementary change, and, thus to the succession 
of two Thick Objects sharing a same Thin Object. Finally, the latest version 
of OCHRE commits to possibilism because it contains an account of possibilia 
(possible objects and possible worlds) in terms of Sums of tropes. 

A version of OCHRE in an executable representation language is in the 
making at the time of writing this document. Compared to DOLCE, it lacks 
rich taxonomies which would allow a simple integration of domain-specific 
ontologies. However, it is not monolithic, since it has been designed to be 
extendable. Theories for contextualization, plans or information objects are 
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missing but could possibly be implemented by introducing new subconcepts of 
Tropes, Thin and Thick objects and Perdurants. 

2.4 OpenCyc 
The Cyc project started in the mid eighties and was carried out by MCC 

(Microelectronics and Computer Consortium) which was later taken over by 
Cycorp. The project resulted in a complex knowledge-based system with a 
large corpus of commonsense knowledge. The knowledge is captured by an 
equally complex ontology, called UpperCyc, whose publicly available version, 
OpenCyc, is the focus of this ~ e c t i o n . ~  

OpenCyc captures millions of everyday terms, concepts and rules which try 
to formalize the human knowledge of reality. Due to problems of consistency 
within a huge knowledge base, the information in OpenCyc has been carved up 
according to hundreds of microtheories. A microtheory, in Cyc terms, usually 
concerns a specific domain of knowledge and bundles assertions that share com- 
mon assumptions about the world thus representing a specific context. [Guha 
and Lenat, 19901 

The highest entity in the OpenCyc ontology is Thing which is further par- 
titioned into MathematicalOrCornputationalThing, Partiallylntangible and 
Individual. All instances of MathematicalOrComputationalThing are ab- 
stract entities that do not have temporal or spatial properties. The collection of 
things that either are wholly intangible or have at least one intangible, i.e., im- 
material, part are subsumed by Partiallylntangible. Individual defines the set 
of individuals that are not a set or collection. The concept hierarchy is sketched 
in Figure 6.4. 

OpenCyc appears to be deeply affected by cognitive assumptions, since its 
categories try to capture naive conceptions of the real world, that is, the human 
fund of commonsense knowledge. For this reason we can consider OpenCyc a 
descriptive ontology. Unfortunately, it must be said that the characterization of 
the commitments on underlying ontological choices seems to be a secondary 
task in the current state of the Cyc project. The documentation is still sketchy, 
and as a consequence, there is a lack of references to the established literature. 
That means there is no clear position which shows whether the ontology com- 
mits to possibilism or actualism, endurantism or perdurantism and whether it 
can be considered multiplicative or reductionist. [Borgo et al., 20021 

OpenCyc is primarily represented in CycL, which closely resembles KIF 
(Knowledge Interchange Format) [Genesereth and Fikes, 19921, basically 
equalling the expressiveness of first-order logic. It comes with a proprietary 
inference engine and application programmer's interface. The usage of mi- 

"ttp: / /www. opencyc. org/ 
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Figure 6.4. OpenCyc Taxonomy. 

crotheories partitions the ontology into modules. However, there is neither a 
microtheory for contextualization, nor for plans, or for information objects. 

2.5 SUMO 
The Suggested Upper Merged Ontology (SUMO)~ is the most prominent 

proposal under consideration by the IEEE Standard Upper Ontology (SUO) 
working group8 [Niles and Pease, 20011. It is an attempt to link categories 
and relations coming from different top-level ontologies in order to improve 
interoperability, communication and search in the Semantic Web area. The 
development of SUMO was based on the merging of different ontology mod- 
ules and theories: John Sowa's upper level ontology [Sowa, 20001, Russell and 
Norvig's upper level ontology [Russell and Norvig, 19951, James Allen's tem- 
poral axioms [Allen, 19841, Casati and Varzi's formal theory of holes [Casati 
and Varzi, 19951, Barry Smith's ontology of boundaries [Smith, 19961, Nicola 
Guarino's formal mereotopology [Borgo et al., 19961 and various formal repre- 
sentation of plans and processes, including the Core Plan Representation (CPR) 
[Pease, 19981 and the Process Specification Language (PSL) [Griininger and 
Menzel, 20031. 

A sketch of the taxonomy is depicted in Figure 6.5. The topmost concept in 
SUMO is Entity, which is further split into Physical and Abstract. Physical 

7http: //ontology. teknowledge. corn/ 
Xhttp: //suo. ieee. org 
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entities are further divided into Objects and Processes. Other general top- 
ics, which are not shown in Figure 6.5, include: structural concepts (instance, 
subclass), general types of objects and processes, abstractions (including set 
theory, attributes, and relations, number, measures, temporal concepts, such as 
duration and parts and wholes). [Pease et al., 20021 

Figure 6.5. SUMO Taxonomy. 

Because of its characteristic merging of different ontology modules and the- 
ories, SUMO is actually not influenced by any specific theoretical approach. 
Rather, it tends to adopt the general categories from various ontology proposals. 
In this context, we should say that SUMO does not clearly adopt either a multi- 
plicative or a reductionist approach. We encounter the same dilemma regarding 
the choices possibilism vs. actualism, as well as endurantism vs. perdurantism. 
We classify SUMO as being descriptive because it adopts the commonsense 
distinction between objects and processes. 

As we have learned above, SUMO is more or less modularized with respect 
to the different theories of which it consists. There is a theory of plans (the Core 
Plan Representation and the Process Specification Language), but no modules 
or theories for contextualization and information objects. SUMO provides quite 
a rich axiomatization formalized in the Standard Upper Ontology Knowledge 
Interchange Format (SUO-KIF), a variation and simplification of the Knowl- 
edge Interchange Format (KIF) [Genesereth and Fikes, 19921. There also is an 
OWL Full version. Both require expressiveness equal to first-order logic. 

3. Summary 
In this chapter we have analyzed the most prominent foundational ontolo- 

gies in light of the requirements put forward in Section 1. Tables 6.1 and 6.2 
summarize the analysis and allow a clear comparison. The decision for the 
DOLCE foundational ontology as modelling basis is straightforward, since it 
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meets all our requirements. Choosing DOLCE means opting for a conceptually 
clean approach with explicit commitment to ontological choices. 

Table 6.1. The different alternatives compared to the requirements for ontological choices 
(mandatory requirements are written in italics; all the others are optional). Cells labelled with 
"unclear" express that there is no clear position to the corresponding ontological choice. This is 
a rather undesirable property of an ontology and is considered negatively. 

Requirement \ Alternative 
Descriptive 
Multi~licative 
Possibilism 

Another unique feature of DOLCE is the existence of a lightweight ver- 
sion. Its reference axiomatization has already been adapted to an executable 
description logic. This saves us a lot of work when we want to realize semantic 
management using our management ontology with DOLCE as a basis. In ad- 
dition, DOLCE is unique in that it is well-modularized, providing all required 
theories for context modelling, plans and information objects. Thus, choosing 
DOLCE minimizes the risk of ontological over-commitment. 

BFO 

Perdurantism 

Table 6.2. The different alternatives compared to the requirements for extrinsic properties 
(mandatory requirements are written in italics; all the others are optional). 

x 

DOLCE 
x 
x 

x I unclear 1 unclear 
x 

Requirement \ Alternative 
Executable Language 
Modularization 
Theory of contextualization 

OCHRE 

unclear 

x 

Theory of plans 1 - 1  x 

I unclear 1 unclear 

BFO 

x 

x 

OpenCyc 
x 

unclear 

Theory of information objects I - I x 

SUMO 
x 

unclear 

DOLCE 
x 
x 
x 

OCHRE 
x 
x 

OpenCyc 
x 
x 

SUMO 
x 
x 



Chapter 7 

AN ONTOLOGICAL FORMALIZATION OF 
SOFTWARE COMPONENTS AND WEB SERVICES 

In the previous chapter we have analyzed the most prominent foundational 
ontologies in light of our requirements for ontological choices. We have decided 
to use the DOLCE foundational ontology as a starting point for modelling our 
management ontology. 

This chapter is concerned with the design of an appropriate management on- 
tology based on DOLCE. Appropriateness comprises: (i) to meet the modelling 
requirements derived from our use cases, (ii) to achieve high quality according 
to the ontology quality criteria and (iii) to enable reuse in specific platforms 
and to reduce modelling efforts to a minimum. 

Regarding (i), the use cases of Section 2 in Chapter 4 on page 65 allowed de- 
riving a set of modelling requirements to be met by the management ontology. In 
order to enable semantic management we have to model: (a) libraries, licenses, 
component profiles, component taxonomies, API descriptions, semantic API 
descriptions, access rights and workjlow information of software components 
and (b) service profiles, service taxonomies, policies, workjlow information, 
API descriptions, as well as semantic API descriptions of Web services. 

Point (ii) coincides with the Question 11.2: How to ensure high quality? 
Therefore, Definition 3.8 on page 41 introduced specific quality criteria. The 
general idea is to axiomatize the intended models of our universe of discourse as 
closely as possible. A high-quality ontology avoids the typical shortcomings of 
common ontologies as outlined in Chapter 5, viz., conceptual ambiguity, poor 
axiomatization, loose design and narrow scope. That means, e.g., to exclude 
unintended interpretations of overloaded terms, such as "software component" 
or "Web service." The management ontology should allow developers and 
administrators to disambiguate such overloaded terms. Hence, our management 
ontology has to have a reference characteristic. This is achieved by an extensive 
axiomatization, resulting in a heavyweight ontology. 
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Finally, (iii) requires the modelling to capture the idiosyncracies of software 
components and Web services and to be platform-independent at the same time. 
The answer to the corresponding research Question 11.3 (How to decrease mod- 
elling eflorts and enable reuse?) is to have a core ontology that can easily 
be reused and specialized in a concrete platform. In fact, Part I11 reuses and 
specializes the management ontology to realize semantic management in a con- 
crete system. Modelling efforts can be decreased by leveraging the foundational 
ontology and its modules. 

Figure 7.1 provides an overview of the reused ontology modules and the 
modules we contribute in this chapter. Besides DOLCE, we also need theories 
for contextualization, for plans and for information objects (as discussed in 
Chapter 6, Section 1, page 96). Descriptions & Situations, the Ontology of 
Plans, and the Ontology of Information Objects realize such theories and come 
in the form of ontology modules. All the modules are briefly explained in 
Section I in order to have a self-contained document. Our contributed ontology 
modules, viz., the Core Software Ontology, the Core Ontologies of Software 
Components and Web Services are introduced in Sections 2,3  and 4. The reader 
may confer to the Appendix where we provide the taxonomies of all ontology 
modules. Finally, Section 5 shows how the management ontology responds to 
(i), (ii) and (iii) by examples. 

T 
Specificity 

DOLCE r l  
,--------------- & Situations 

Ontology 

I I 

Software Components of Web Sewices 

reused 
ontology 
modules 

contribution 

Figure 7.1. Overview of the management ontology as UML package diagram. Packages rep- 
resent ontology modules; dotted lines represent dependencies between modules. An ontology 
module MI depends on M2 if it specializes concepts of M2, has associations with domains and 
ranges to M2 or reuses its axioms. 
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Some of the ontology modules discussed in this chapter are reused as depicted 
in Figure 7.1. DOLCE is introduced in [Masolo et al., 20031, the Descriptions 
& Situations module, as well as the Ontology of Plans and the Ontology of 
Information Objects are discussed in [Gangemi et al., 2004bl. Parts of the Core 
Ontology of Web Services originate from [Mika, Oberle, et al., 2004a, Mika 
et al., 2004b, Gangemi et al., 2003b, Oberle et a]., 2005b, Lamparter et al., 
20051. 

1 Modelling Basis 
When designing an ontology, it is desirable to start with an extensive and 

sound modelling basis. Hence, our methodology is geared towards reuse of 
generic ontology modules in order to reduce modelling efforts. Figure 7.1 
already provided an overview of the reused ontology modules and the modules 
we contribute. We begin in this section by briefly discussing the reused ontology 
modules DOLCE, Descriptions & Situations, the Ontology of Plans, and the 
Ontology of Information Objects. 

1.1 DOLCE 
Foundational ontologies are generic, heavyweight and designed for reference 

purposes (cf. the classification of ontologies in Chapter 3, Section 2, on page 
44). Using a foundational ontology as a modelling basis means relating core 
concepts and associations to some proposed invariant categories of human cog- 
nition (which are reflected in the foundational ontology itself). This prompts 
the ontology engineer to sharpen his notions with respect to the distinctions 
made in the foundational ontology. What is typically gained is an increased 
understanding of one's own ontology. 

Chapter 6 has discussed our decision for the DOLCE foundational ontology. 
First, DOLCE provides the required theories for modelling contexts, plans and 
information objects. All of them are required for our ontologies and are ex- 
plained below. Second, DOLCEcommits to ontological choices (perdurantism, 
possibilism, being multiplicative, being descriptive) which are suitable for our 
domain. Third, DOLCE comes both in a reference and in an application ver- 
sion, axiomatized in quantified modal logic and implemented description logics 
(OWL DL), respectively. That allows us to formalize our own ontology with a 
maximum of expressiveness and to use it for run time reasoning later on. 

We have already introduced DOLCE in Chapter 6, Section 2. However, we 
repeat it here in more detail and for the sake of readability. DOLCE (Descrip- 
tive Ontology for Linguistic and Cognitive Engineering) classifies entities into 
four categories. These are, as shown in Figure 7.2, Endurants, Perdurants, 
Qualities and Abstracts [Masolo et al., 20021. The main relation between 
Endurants (i.e., objects or substances) and Perdurants (i.e., events or pro- 



110 SEMANTIC MANAGEMENT OF MIDDLEWARE 

Particula 

f 
I I I 

Abstrac 9 
I - 

i o ~ i  tedln 
I I 

inherenth lxatedln local*ln Physical' Temporal Abstract 
Region Region Region 

4 

Figure 7.2. Sketch of DOLCE as UML class diagram. [Gangemi et al., 2004bl 

cesses) is that of participation: an Endurant "lives" in time by participating 
in a Perdurant. DOLCE introduces Qualities as another category that in- 
cludes the properties of objects or events which we can perceive, measure or 
conventionally assert (e.g., color, density, legal validity). Finally, Abstracts 
do not have spatial or temporal qualities, nor are they qualities themselves. In 
particular, Regions are used to encode the representation of Qualities as con- 
ventionalized in some metric or conceptual space (e.g., a color space, a musical 
pitch space, a set of legal values). Every category features a whole taxonomy 
of specializations. 

1.2 Descriptions & Situations (DnS) 
The domain we want to model, namely that of software components and Web 

services, requires an ontological formalization of context. The most prominent 
examples for the need of context modelling are the different views that might 
exist on data. Data can play the role of both input and output, depending on the 
context considered. In Chapter 6, Section 1, page 96, we have already discussed 
that a theory for contextualization is required for that reason. 

DOLCE provides an ontological theory of contexts that comes in the form of 
an ontology module. The module's name is Descriptions & Situations (DnS). 
DnS can be considered an ontology design pattern for structuring core and do- 
main ontologies that require contextualization. The following paragraph pro- 
vides a brief introduction. For a more detailed description please cf. [Gangemi 
et al., 2OO4b, Gangemi and Mika, 20031. 
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When Descriptions & Situations is used with DOLCE, the DOLCE entities 
are called ground entities and the newly introduced entities of Descriptions & 
Situations are called descriptive entities. We also visualize this distinction in 
Figure 7.3. Parameters, Roles and Courses are the descriptive entities which 
are special kinds of ConceptDescriptions (a D0LCE:NonAgentiveSocial- 
Object).' The descriptive entities "describe" the ground entities in the follow- 
ing way:2 Parameters are valuedBy DOLCE:Regions, Roles are playedBy 
D0LCE:Endurants and Courses sequence D0LCE:Perdurants. The de- 
scriptive entities are aggregated by a SituationDescription via the defines 
association. The SituationDescription ontologically represents the context. 

I I 

Role Course 
requisiteFor modalTarget t 

I I settino I I 

Figure 7.3. The Descriptions & Situations (DnS) ontology module as UML class diagram. 
Grey classes represent the ground entities of DOLCE. Descriptive Entities are Parameters, 
Roles and Courses. [Gangemi et a]., 2004bl 

Furthermore, the module can be used to reify the satisfiability relation, viz., 
k, of the underlying logic. As a result, we have a satisfies association between 
two sets of assertions. The first set is the Situation which groups ground entities 
via the setting association. The second set of assertions is the Situation- 
Description. A Situation satisfies a SituationDescription if its components 
describe the ground entities according to specified rules. The Descriptions & 
Situations module only defines the most generic satisfies association implying 

' ~ h r o u ~ h o u t  Chapter 7, concepts and associations are labelled in a namespace-like manner. Narnespace- 
prefixes indicate the module where concepts and associations are defined. If no namespace is given, concepts 
and associations are assumed to be defined in the ontology module currently discussed. 
 he reader may note, that we occasionally use concept and association names (written in sans serif and 
preceded by a namespace to clarify their origin) as subjects, objects and predicates of the sentences. 
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that at least some components of a SituationDescription must describe entities 
in the Situation. This constraint is minimal and for specialized Situation- 
Descriptions additional constraints should be given in order to reason with 
the satisfaction of candidate Situations. One example is the module discussed 
next: the Ontology of Plans. 

1.3 Ontology of Plans (OoP) 
One of the explicit requirements derived from the Transactional Settings, 

Secure Communication, Analyzing Message Contexts and Detecting Loops in 
Interorganizational Workjows use cases is the possibility to model workflow 
information between software components or between Web services. One of 
the DOLCE modules, the Ontology of Plans (OoP), formalizes a theory of plans 
in a generic way. It can be reused to model workflow information as well. 

The Ontology of Plans applies the ontology design pattern of Descriptions & 
Situations to characterize planning concepts. The intended use of the module 
is to specify plans at an abstract level independent from existing calculi. It is 
expected that the concepts of the module are implemented as a framework to 
define detailed or approximate plans for any use (social, personal, computa- 
tional) by appropriate tools. The resulting plans would then be grounded in 
some system that implements a set of functionalities and reasons according to 
the specifications given here. For a detailed description the reader is 
to [Gangemi et al., 2004bl. 

referred 

t 
9 DnS:defines f 

DnS:AgentiveRol Plan 
, 1 h I 

proactively 
Satides 

Figure 7.4. The Ontology of Plans as UML class diagram. Grey classes represent ground cnti- 
ties. Concepts from Descriptions & Situations are labelled namespace-like with DnS. [Gangcmi 
et al., 2004bl 

Plans are special kinds of DnS:SituationDescriptions, which DnS:define 
Tasks (a special kind of DnS:Course). A typical hierarchy of Tasks (case, 
branching, synchronization, concurrency, cycling, etc.) is characterized with 
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the help of succession relations. Furthermore, Tasks DnS:sequence Activi- 
ties - a specialization of DOLC E: Perdu rant. Activities are complex actions 
that are at least partly conventionally planned. 

Specializations of the satisfies association of Descriptions & Situations 
are applied to express preconditions, postconditions, and several types of 
satisfaction between a Plan and specific DnS:Situations, e.g., proactively- 
Satisfies. 

As an example we might consider the CustomerEntityBean which modi- 
fies the Customer table (cf. our motivating example in Chapter 2, Section 3.1, 
page 24). In order to formalize this setting, we introduce the CustomerEntity- 
BeanPlan which DnS:defines the ModifyTable task. An actual execution of 
this task is represented via the 23:58:00 instance to reflect its timestamp, i.e., 
DnS:sequences(ModifyTable, 23:58:00). We keep this as a running example, 
refine and extend it as we move along. 

(Ex 1) 00 P : Plan(CustomerEntityBeanP1an) 
(Ex2) DnS:defines(CustomerEntityBeanPlan, ModifyTable) 
(Ex3) OoP:Task(ModifyTable) 
(Ex4) DnS:sequences(ModifyTable, 23:58:00) 
( E x 3  OoP:Activity(23:58:00) 
(Ex6) OoP:PlanExecution(ModifyTableExecution) 
(Ex7) DnS:setting(23:58:00, ModifyTableExecution) 

1.4 Ontology of Information Objects (010) 
In our motivating examples we have encountered fundamental ontological 

questions, e.g., how to model the relationship between a user in an information 
system and its corresponding natural person (cf. Section 3.1 in Chapter 2). 
Hence, another requirement for our ontology identified in Chapter 6, Section 1, 
is a concise distinction between entities in an information system and the real 
world. 

The DOLCE library provides another module that allows us to formalize 
such relationships: the Ontology of Information Objects (010). Information 
objects are the core notion of a semiotic ontology design pattern which we 
briefly discuss here. For a more detailed discussion please cf. [Gangemi et al., 
2004bl. 

A content (information) transferred in any modality is assumed to be equiva- 
lent to a kind of social object called InformationObject. InformationObjects 
are spatio-temporal entities of abstract information as described in Shannon's 
communication theory, hence they are assumed to be in time and realized by 
some entity. 

Figure 7.5, which depicts the concepts and associations of the module, is 
best explained by a concrete example. The encoding of the CustomerEnt ity- 
Bean in Java could be considered an InformationObject. In this case, the 
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Figure 7.5. The Ontology of Information Objects as UML class diagram. Concepts defined 
in DOLCE and Descriptions & Situations (DnS) are labelled with corresponding namespaces. 
[Gangemi et al., 2004bl 

InformationObject would be orderedBy the Java language (the Information- 
EncodingSystem) and realizedBy a specific appearance of the algorithm in 
main memory (e.g., the contents between memory addresses 0x2112-0x5150). 
The CustomerEnt ityBean expresses a specific 00P:Plan of computational 
tasks (such as ModifyTable) and is interpretedBy a CPU.~  

(Ex8) 010:1nformationObject(CustomerEntityBean) 
(Ex9) OIO:orderedBy(CustomerEntityBean, Java) 

(ExlO) OIO:lnformationEncodingSystem(Java) 
(Ex1 1) OlO:realizedBy(CustomerEntityBean, 0x2112-0x5150) 
(Ex12) OIO:lnformationRealization(0~2112-0x5150) 
(Ex1 3) OIO:expresses(CustomerEntityBean, CustomerEntityBeanPlan) 
(Ex14) OIO:interpretedBy(CustomerEntityBean,CPU) 
(Ex15) DOLCE:MaterialArtifact(CPU) 

2. Core Software Ontology (CSO) 
In order to model the required aspects of components and services, it is 

necessary to identify fundamental concepts, such as software or data, and to 
formalize them by reusing our modelling basis. In this section, we contribute 
the Core Software Ontology, which formalizes such fundamental concepts. The 

3 ~ e  assume without further mention that for any association there exists an inverse. The naming of associ- 
ations and their inverses follows an intuitive scheme, e.g., the inverse of realizedBy is called realizes. 
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Core Software Ontology can be classified as reference, core and heavyweight, 
and is later reused to formalize the required aspects of components and ser- 
vices. Thus, the Core Software Ontology acts as a common basis for the Core 
Ontologies of Software Components and Web Services which are built in the 
subsequent sections. 

Having a common basis is beneficial because it requires modelling the fun- 
damental concepts only once. In essence, the Core Software Ontology meets 
all modelling requirements which are common to software components and 
Web services (as derived by our use cases starting on page 66). These are: API 
descriptions, semantic API descriptions, workJlow information, access rights 
and policies. The modelling requirements constrain our modelling horizon and 
give us indications which concepts and associations we have to model. When 
formalizing concepts and associations, we usually specialize the ontology de- 
sign patterns provided by DOLCE and its modules. If such design patterns are 
not applicable the modelling is left to our discretion. Note that we consider our 
contributed ontologies as being formalized in DOLCE's representation formal- 
ism, viz., modal logic S5. Although we do not explicitly use modal quantifiers, 
their usage is rooted in DOLCE's concepts and associations, cf. [Masolo et al., 
20031, which we reuse for our modelling. 

2.1 Software vs. Data 
As mentioned above, the Core Software Ontology formalizes the most fun- 

damental concepts required to model both components and services. We start 
in this section with a detailed discussion of software and data. In order to clarify 
both concepts, which are heavily inflicted by polysemy, it is necessary to iden- 
tify and formalize the entities of the computational domain. The computational 
domain has a reality of its own, consisting of data manipulated by programs 
that implement algorithms. The programs that manipulate the data are usually 
referred to as software. Upon close inspection, it seems that the term software 
is overloaded and refers to at least three different concepts [Gangemi et al., 
2003bl: 

1 The encoding of an algorithm specification in some kind of representation 
(i.e., 0I0:lnformationEncodingSystem). Encoding can be either in mind, 
on paper or any other form. The CustomerEntityBeancan be represented 
as Java or pseudo code, for instance. This is SoftwareAsCode and is a 
kind of 0IO:lnformationObject. 

2 The realization of the code in a concrete hardware. These realizations are 
the D0LCE:PhysicalEndurants that are stored on hard disc or residing in 
memory. Henceforth, we will call them ComputationalObjects (a special 
kind of 0IO:lnformationRealization). This could be the appearance of 
the CustomerEntityBean in main memory that can be interpreted and 
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executed by the CPU. Hence, the difference between 1 and 2 is that 2 is 
physically present in some hardware. 

3 The running system, which is the result of an execution of a Computational- 
Object. This is the form of software which manifests itself in a sequence 
of activities in the computational domain, e.g., the increment of a variable, 
the comparison of data, the storage of data on the hard disc, etc. This form 
of software is a D0LCE:Perdurant which we will call Computational- 
Activity. 

ComputationalObjects (item 2) are a specialization of 0IO:lnformation- 
Realization (any entity that realizes an 0IO:lnformationObject) as introduced 
in the Ontology of Information Objects. ComputationalActivities (item 3) 
are a specialization of 0oP:Activity as introduced in the Ontology of Plans. 
ComputationalObjects and ComputationalActivities are the entities that live 
in the computational domain. The definitions below formalize the described 
properties.4 

(Dl) ComputationalObject(x) =def OIO:lnformationRealization(x) A 
Vy(DOLCE:participantln(x, y) -t ComputationalActivity(y)) A 
3d(DOLCE:specificallyConstantlyDependsOn(~, d) A 
Hardware(d)) 

(D2) ComputationalActivity(x) =def OoP:Activity(x) A 
Vy(DOLCE:participantln(y, x) -+ ComputationalObject(y)) A 
3c(DOLCE:specificallyConstantlyDependsOn(~, C) A 
ComputationalObject(~)) 

ComputationalObjects are characterized by the fact that they are neces- 
sarily dependent on Hardware which is a D0LCE:MaterialArtifact. The ex- 
ecution of a ComputationalObject may lead to ComputationalActivities. 
Hence, CornputationalActivities depend on the existence of a corresponding 
ComputationalObject. A suitable dependence association is axiomatized in 
DOLCE and is called specificallyC~nstantlyDependsOn:~ 

(D3) DOLCE:specificallyConstantlyDependsOn(x, y) =def 

0(3t(DOLCE:presentAt(x, t)) A Vt(DOLCE:presentAt(x, t) + 

DOLCE:presentAt(y, t))) 

4 ~ e  consider unbound variables in definitions, axioms, and theorems as universally quantified. 
5 ~ n  entity that specificallyConstantlyDependsOn another entity is similar to weak entities in UML 
class diagrams. An entity x specificallyConstantlyDependsOn another entity y iff, at any time t, x 
cannot be present at t unless y is also present at t. DOLCE formalizes this association by using the 
DOLCE:presentAt(x, t) association that stands for "x is present (exists) during the time interval or instant 
t." Note that qlT( t1 ,  x) is the temporal location of x in t'. [Masolo et al., 20031 
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As an example, we might consider the ComputationalObject residing in 
memory between addresses 0x21 12 and 0x5150 whose (partial) execution leads 
to the ComputationalActivity carried out at and identified by the timestamp 
23:58:00. The CornputationalObject could be a concrete appearance of 
the CustomerEntityBean (cf. the motivating example on page 24) and the 
ComputationalActivity could be the execution of one of its methods. 

Regarding item 1, we characterize SoftwareAsCode (which we abbreviate 
to Software) as an 0IO:InformationObject. Accordingly, we specialize the 
design pattern represented by the Ontology of Information Objects (cf. Fig- 
ure 7.5 on page 1 14). First, we constrain the 0IO:realizedBy association to 
ComputationalObjects. Second, we say that Software 0IO:expresses an 
0oP:Plan (cf. Figure 7.6 for an overview). The 0oP:Plan consists of an arbi- 
trary number of ComputationalTasks that DnS:sequence Computational- 
Activities (cf. Definition (D6) below). As explained in the Ontology of Plans 
(Section 1.3), Tasks are the descriptive counterparts of 0oP:Activities which 
are actually carried out. Definition (D5) below captures this intuition of soft- 
ware. 

(D5) Software(x) =def 

OIO:lnformationObject(~) A \Jy(OIO:realizedBy(x, y) + 

ComputationalObject(y)) A 3p, t(OoP:Plan(p) A 
OIO:expresses(x, p) A ComputationalTask(t) A DnS:defines(p, t)) 

(D6) ComputationalTask(x) =def OoP:Task(x) A 
\Jy(DnS:sequences(x, y) + ComputationalActivity(y)) 

The ComputationalObject introduced in (Ex16) can be regarded as a con- 
crete realization of Software (in our case as the CustomerEntityBean). We 
have learned in our motivating example that the bean modifies the Customer ta- 
ble. Hence, its corresponding 0oP:Plan DnS:defines a ComputationalTask 
that represents the m~dification.~ The ComputationalActivity introduced in 
(Ex17) could be one specific execution of this task. 

(Ex 19) Software(CustomerEntityBean) 

6 ~ o t e  that the detail of modelling ComputationalTasks is a matter of choice. In principle, ModifyTable 
can be considered a complex task and can be broken down to CPU operations. 
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(Ex20) OIO:realizes(Ox2112-0x5150, CustomerEntityBean) 
(Ex2 1) OIO:expresses (CustomerEntityBean, CustomerEntityBeanPlan) 
(Ex22) OOP :Plan (CustomerEntityBeanPlan) 
(Ex23) DnS:defines(CustomerEntityBeanPlan, ModifyTable) 
(Ex24) CornputationalTask(ModifyTab1e) 
(Ex25) DnS:sequences(ModifyTable, 23:58:00) 

Figure 7.6. The classification of software and data. Concepts and associations taken from 
DOLCE, Descriptions & Situations (DnS), the Ontology of Plans (OoP), the Ontology of Infor- 
mation Objects (010) are labelled with a namespace. 

We consider the data which are manipulated by the programs as 
CornputationalObjects as well. This reflects the fact that the appearances 
in the main memory or on the hard disc can be interpreted as instructions for 
the CPU (i.e., as software) or can be treated as data from the viewpoint of 
another program. For example, the operating system manipulates application 
software (loading and unloading it into memory, etc.) much like application 
software manipulates application data. 

Hence, Data can also be considered as a special kind of 0IO:lnformation- 
Object. The difference to Software is that Data does not 0IO:express an 
0oP:Plan. Furthermore, we introduce AbstractData as a special kind of 
Data that identifies something different from itself. An example for Abstract- 
Data might be a user account in a Unix operating system which has a physical 
counterpart in the real world. Thus, we say that AbstractData identifies a 
D0LCE:Particular (a natural person, a company, a physical object) [Gangemi 
et al., 2004bl. The identifies association is a specialization of 0IO:about. 
Definitions (D7), (D8), and (D9) capture these intuitions. 
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(D7) Data(x) =def 010:lnformation0bject(~) A 
Vy(OIO:realizedBy(x, y) + ComputationalObject(y)) 

(D8) AbstractData(x) =def 

Data(x) A 3y(DOLCE:Particular(y) A identifies(x, y)) 
(D9) identifies(x, y) =def 

OIO:about(x, 9) A AbstractData(~) A DOLCE:Particular(y) A x # y 

As an example, we might introduce another two ComputationalObjects that 
represent the dbuser and the Customer table in main memory. The dbuser 
is AbstractData because it identifies a D0LCE:NaturalPerson outside the 
computational domain, in this case the a ~ t h o r . ~  

ComputationalObject(0~22-0x23) 
ComputationalObject(0~316-0x812) 
AbstractData(dbuser) 
Data(CustomerTab1e) 
OlO:realizedBy(dbuser, 0x22-0x23) 
OlO:realizedBy(CustomerTable, 0x316-0x812) 
identifies(dbuser, DanielOberle) 
DOLCE:NaturalPerson(DanielOberle) 

The theorem (TI) below is an entailment of our axiomatization. (Tl)  states 
that Software must also be considered as Data. As discussed before, this 
is intuitively clear because an algorithm can be considered as Data from the 
viewpoint of a compiler, for example. Comparing (D5) and (D7), we find 
that Software additionally 0IO:expresses an 0oP:Plan with at least one 
ComputationalTask. Thus, Software is more specific than Data. 

(TI) Software(x) -+ Data(x) 

2.2 API Description 
The formalization of fundamental concepts like Software and Data is a 

prerequisite for defining API descriptions which is explicitly required by the 
Automatic Generation of Web Service Descriptions, Exception Handling and 
Monitoring of Changes use cases. Assuming the object oriented paradigm (to 
which we limit ourselves in the remainder of this book), we need to model 
classes, methods, their inputs, outputs, and datatypes, as well as exceptions. 
Note that we do not strive to formalize all constructs of object orientation. We 
limit ourselves to the particular subset that is necessary to formalize simple 

7 ~ o t e  that the Customer table as a whole is Data, but its specific rows, i.e., customer entries, are Abstract- 
Data. 
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API descriptions (e.g., we do not formalize specific objects, polymorphism or 
inheritance). Below, we give our understanding of those concepts. 

(D10) Class(x) =def Software(x) A Vy(DOLCE:properPart(~, y) -+ 

(Data(y) v Method(9))) 
(Dl 1) Method(x) =def Software(x) A b'y(DOLCE:properPart(y, X) -+ 

Class(y)) 
(D12) Exception(x) =def Class(x) A b'y(methodThrows(y, X) -+ 

Method(y)) 
(D13) DOLCE:properPart(x, y) =def 

DOLCE:part(x, y) A lDOLCE:part(y, X) 

(Al) methodRequires(x, y) -+ Method(x) A Data(y) 
(A2) methodYields(x, y) -+ Method(x) A Data(y) 
(A3) methodThrows(x, y) -+ methodYields(x, y) A Exception(y) 
(A4) dataType(x, y) -+ Data(x) A (Region(y) v Data(y)) 

Definition (DIO) considers a Class as a special kind of Software that en- 
capsulates an arbitrary number of Data and an arbitrary number of Methods. 
Vice versa, a Method is defined as being a part of a Class, having input and 
output parameters and throwing exceptions. The associations between Meth- 
ods and their parameters and exceptions are established via methodRequires, 
methodyields and methodThrows (cf. (Dl I), (Al), (A2), and (A3)). Excep- 
tions are special kinds of Classes as defined in (D12). dataType relates Data 
with specific kinds of D0LCE:Regions in the case of simple datatypes, such 
as strings or integers, or with other Data in the case of complex datatypes, e.g., 
other classes (cf. Axiom (A4)). 

As an example, both the CustomerEntityBean and the WebShopServlet 
would be Classes. For the bean, we just specialize the instance introduced in 
(Ex19) on page 117. The set of instances below also formalizes the servlet's 
doGet 0 method: 

(Ex34) Class(WebShopSew1et) 
(Ex35) Cla~s(CustomerEntityBean) 
(Ex36) DOLCE:properPart(WebShopSewlet, doGet) 
(Ex37) Method(doGet) 
(Ex38) methodRequires(doGet, req) 
(Ex39) methodRequires(doGet, resp) 
(Ex40) Data(req) 
(Ex41) Data(resp) 
(Ex42) dataType(req, HttpServletRequest) 
(Ex43) dataType(resp, HttpSewletResponse) 
(Ex44) Class(HttpSew1etRequest) 
(Ex45) Class(HttpServ1etResponse) 
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2.3 Semantic API Description 
Another explicit requirement of the Component ClassiJication and Discov- 

ery, Semantics of Parameters, Selecting Service Functionality and Incompatible 
Inputs and Outputs use cases is to model semantic API descriptions. The use 
cases propose to model the meaning of methods and parameters in order to 
allow for a more powerful search over a large unfamiliar API, for instance. 

Our modelling so far already allows to achieve this goal. As depicted 
in Figure 7.7, the meaning or behavior of a Method can be modelled via 
0IO:expresses and a corresponding 0oP:Plan. We already gave an example, 
namely the CustomerEntityBeanPlan, in (Ex22) on page 118. The semantics 
of parameters, as opposed to their datatypes, can be modelled via 0IO:about 
which can point to any concept in the ontology. Thus, it is possible to model 
that the getPrice 0 method returns a specific Currency (a specialization of 
DOLCE:AbstractRegion), for example. 

(Ex46) Method(getPrice) 
(Ex47) methodYields(getPrice, result) 
(Ex48) Data(resu1t) 
(Ex49) dataType(result, xsd:jloat) 
(Ex50) OIO:about(result, Euro) 
(Ex5 1) Currency(Euro) 

Figure 7.7. Semantic API description. 

We here introduce the notion of an lnterface in order to group methods 
and parameters independently of the Classes they belong to (cf. (D14) and 
(A5) below). The lnterface does not coincide with Java interfaces because it 
allows to grasp additional information as explained above. In our ontology, 
the lnterface has to be classified as Data as it cannot be executed, i.e., it does 
not 0IO:express an 0oP:Plan. Different Classes may implement the same 
lnterface as stated in (A6). In doing so, we are able to model that different 
classes provide different names for methods with comparable functionality (e.g., 
getPrice 0 vs. getcost 0). 
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(D14) Interface(x) =def Data(x) A Vm(inferfaceRequires(x, m )  + 

(3p(010:expresses(m,p) A OoP:Plan(p)) A 
Vd(methodRequires(m, d) -t 
3e(DOLCE:Particular(e) A OIO:about(d, e))))) 

2.4 Workflow Information 
The possibility of modelling workflow information, such as information 

about the WebShopServlet invoking the CustomerEntityBean, is explic- 
itly required by the use cases Transactional Settings, Secure Communication, 
Analyzing Message Contexts and Detecting Loops in Interorganizational Work- 
flows. 

For modelling workflow information, we use and specialize the ontology 
design pattern of the Ontology of Plans (cf. Figure 7.4 on page 112) which 
in turn builds on Descriptions & Situations. We do so because the design 
pattern allows abstracting from concrete, i.e., actually executed, workflows. 
That means, we use ComputationalTasks, which are OoP:Tasks, to represent 
invocations, the addition of two integers, etc., rather than the actual executions 
of such tasks (which would be ComputationalActivities). Computational- 
Tasks are grouped and linked via the 0oP:successor and 0oP:predecessor 
associations in an 0oP:Plan (a DnS:SituationDescription). 

The workflow information we need to model is twofold. First, we have 
to model invocations between software. Second, we also need to model the 
inputs and outputs of tasks because the Ontology of Plans does not provide 
such capabilities. 

Invocations Between Software 
We start with two associations, viz., executes and accesses,  to formalize 

invocations between Software. Below, (D15) introduces executes as "short- 
cut" between Software, such as Class or Method, and a ComputationalTask. 
For example, the doGet 0 method of our WebShopServlet executes an in- 
vocation task. 

(D16) introduces accesses as "shortcut" between the ComputationalTask 
and the Software or Data that is being called or modified by the task. For ex- 
ample, the invocation task of the WebShopServlet accesses the Customer- 
EntityBean. The sequence of executes and accesses can be further abbre- 
viated by invokes which is declared as being transitive (cf. (D17) and (A7)). 
Axioms (A8) and (A9) are introduced for convenience. Regarding (A8), we say 
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that also a Class executes a ComputationalTask when one of its Methods 
executes this task. Regarding (A9), we state that invokes also holds when we 
have succeeding tasks. 

(D15) executes(x, y )  =d,f Software(x) A ComputationalTask(y) A 
30, ca, p(ComputationalObject(co) A ComputationalActivity(ca) A 
OoP:Plan(p) A OIO:realizedBy(x, co) A OIO:expresses(x,p) A 
DnS:defines(p, y )  A DnS:sequences(y, ca) A 
DOLCE:participantln(co, ca)) 

(D16) accesses(x, y )  =,,, 
ComputationalTask(x) A Data(y) A3ca, co(DnS:sequences(x, ca) A 
ComputationalActivity(ca) A DOLCE:participantln(co, ca) A 
ComputationalObject(co) A OIO:realizes(co, y ) )  

(D17) invokes(x, y )  =,,, 3z(executes(x, z )  A accesses(2, y ) )  

(A7) invokes(x, z )  t invokes(x, y )  A invokes(y, z )  
(AS) executes(x, y )  t 

(executes(z, y )  A Method(2) A DOLCE:properPart(x, z )  A Class(x) 
(A9) invokes(x, z )  t 

executes(x, y) A OoP:successor(y, t )  A accesses(t, z)  

In some environments, calls are executed on behalf of a user whose identity 
can vary at run time or the authentication can be changed explicitly (called 
the run-as paradigm). Our running example requires us to express the context 
switch of the CustomerEntityBean, for instance. In order to model this kind 
of information we introduce the association contextuser as shown below. 

Revisiting our example, we have a ComputationalTask that models the 
WebShopServletls call of the CustomerEntityBean. We also have a task 
that models the modification of the Customer table on behalf of the bean. Note 
that this task is executed with dbuser's credentials. In the examples below, 
(Ex55) can be inferred from (Ex34), (Ex36), (Ex37), (Ex52), (Ex53), (Ex54), 
(A7) and (AS). 

(Ex52) ComputationalTask(Ca1lBean) 
(Ex53) executes(doGet, CallBean) 
(Ex54) accesses(CallBean, CustomerEntityBean) 
(Ex55) (Ex34), . . . , (A8) invokes( WebShopSewlet, CustomerEntityBean) 
(Ex56) ComputationalTask(ModifyTab1e) 
(Ex57) executes(CustomerEntityBean, ModifyTable) 
(Ex58) contextUser(dbuser, ModifyTable) 
(Ex59) accesses(ModifyTable, CustomerTable) 
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Inputs and Outputs 
Besides invocations, we also need to model the lnputs and Outputs of 

tasks. The Ontology of Plans does not provide such capabilities. lnputs and 
Outputs are required when we want to represent the information of a WS-BPEL 
workflow, for instance. lnputs and Outputs are DnS:Roles which are both 
DnS:playedBy Data and DnS:definedBy an 0oP:Plan (cf. (D19), (D20) 
and (A12)). The relationships between lnputs (Outputs) and Computational- 
Tasks are modelled by inputFor (outputFor) as specified in (A10) and (A1 I ) . ~  
The difference between lnputs and Outputs is that the former must be present 
before the latter (cf. (A13)). 

(A10) inputFor(x, y) -+ 

DnS:modalTarget(x, y) A Input(x) A ComputationalTask(y) 
(A1 1) outputFor(x, y) --+ 

DnS:modalTarget(x, y) A Output(x) A ComputationalTask(y) 
(A12) Input(%) v Output(x) -+ 3p(OoP:Plan(p) A DnS:defines(p, x)) 
(A13) ComputationalTask(ct) -t Vdl, d2(Vi, o(inputFor(i, ct) A 

DnS:playedBy(i, d l )  A outputFor(0, ct) A DnS:playedBy(o, d2)) -+ 

3tl, t2(presentAt(dl, t l )  A presentAt(d2, t2) A tl < t2)) 

As a concrete example, consider the Input for ModifyTable which would be 
the Customer table (cf. (Ex60), (Ex61) and (Ex62) below). 

(Ex60) Input (ModifyTableInput) 
(Ex6 1) DnS:played By(ModifyTab1elnput , CustomerTable) 
(Ex62) input For(ModifyTableInput, ModifyTable) 

2.5 Access Rights and Policies 
The requirement to model access rights and policies stems from the Access 

Rights, Analyzing Message Contexts and Policy Handling use cases. In general, 
access rights are required to state that access is granted for a specific user on a 
specific resource. Policies can be regarded as a generalization of access rights. 
They define high-level guidelines that constrain the behavior of an information 
system. 

We use and specialize Descriptions & Situations for modelling access rights 
and policies. The design pattern represented by Descriptions & Situations 
(cf. Figure 7.3 on page 11 1) provides us with the basic primitives of context 

8 ~ o t h  are specializations of DnS:modalTarget, viz., the generic association holding between DnS:Roles 
and DnS:Courses. 
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modelling, such as the notion of roles, which allows us to talk about subjects 
and objects of a policy on the abstract level, i.e., independent of the entities that 
play such roles. As we have learned in Section 1.2, page 110, Descriptions & 
Situations therefore distinguishes between descriptive and ground entities. 

In a first step, it is necessary to introduce further ground entities which are 
required later on. (D21) below specifies a User as a special kind of Abstract- 
Data which identifies a DnS:Agent. The intuition behind User is a user 
account in an operating system. Hence, Users identify DnS:Agents which 
are either D0LCE:AgentivePhysicalObjects or D0LCE:AgentiveSocial- 
Objects. Most frequently, but not always, a natural person is associated with 
such an account. We aggregate Users to a UserGroup by exploiting D0LCE:- 
Collection in (D22). 

In a second step, we specialize the descriptive entities of Descrip- 
tions & Situations, viz., DnS:Roles, DnS:Courses, DnS:Parameters, and 
DnS:SituationDescriptions as follows. First, we introduce two DnS:Roles 
to represent the subject and the object of a policy in (D23) and (D24). 
Policysubjects are DnS:AgentiveRoles and can be DnS:playedBy Users 
or UserGroups. Policyobjects are DnS:NonAgentiveRoles and can be 
DnS:playedBy Data. Second, we need to represent the predicate of a pol- 
icy by a special kind of DnS:Course. (D6) on page 117 already intro- 
duced ComputationalTask which meets this requirement. We further ag- 
gregate such tasks to TaskCollections in (D25). The intuition behind Task- 
Collections are the security "roles" in operating or database systems. That 
means a Taskcollection groups ComputationalTasks, such as read, write or 
execute. Third, we introduce Constraints as special kinds of DnS:Parameter. 
The Com putationalTask or TaskCollections can be constrained in some way, 
e.g., a Web service policy might state that an invocation is only possible with 
Kerberos or X509 authentication (cf. (D26)). Finally, we construct a Policy- 
Description, viz., aspecial kindof DnS:SituationDescription, from the afore- 
mentioned  concept^.^ Figure 7.8 provides an overview. 

g ~ o t e  that DnS:unifies is the generic association between DnS:SituationDescriptions and 
D0LCE:Collections. 
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It is worthwhile to spend some words on the DnS:attitudeTowards asso- 
ciation between DnS:Roles and DnS:Courses. The DnS:attitudeTowards 
association is a special kind of DnS:rnodalTarget and can be considered the 
descriptive counterpart of the D0LCE:participantln association. It is used to 
state attitudes, attention, or even subjection that an object can have with re- 
spect to an action or process. In our case, DnS:attitudeTowards it is used 
to state the relationship between PolicySubjects, as well as PolicyObjects, 
and the ComputationalTask or Taskcollection. Descriptions & Situations 
provides us with three initial specializations of DnS:attitudeTowards, viz., 
DnS:rightTowards, DnS:empoweredTo, and DnS:obligedTo. We further 
refine DnS:rightTowards in (A14) below. 

(A15) and (A16) infer the closure of all resulting rights considering User- 
Groups and TaskCollections. A Policysubject is granted rights on all tasks 
which are members of the Taskcollection. Similarly, a User is granted all 
access rights which are granted for his UserGroup. 

An analysis of the descriptor of our WebShopServlet (web. xml, cf. Exam- 
ple 2.1 on page 23) lets us derive the following PolicyDescription. The HTTP 
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Figure 7.8. The Policy Description as U M L  class diagram. Grey classes represent ground 
entities, white classes the descriptive entities o f  Descriptions & Situations or specializations 
thereof. 

basic authentication allows anybody to perform an HTTP GET on the servlet. 
We consider anybody as a UserGroup that has every User of the system as 
D0LCE:member. 

PolicyDescription(WebShopSewletPolicy) 
DnS:defines(WebShopSewletPolicy, SewletCaller) 
PolicySubject(SewletCaller) 
UserGroup(anybody) 
DnS:playedBy(SewletCaller, anybody) 
DnS:defines(WebShopSewletPolicy, GET) 
ComputationalTask(GET) 
computationalRightTowards(SewletCaller, GET) 
DnS:defines(WebShopSewletPolicy , SewletCallee) 
PolicyObject(SewletCal1ee) 
Class(WebShopSew1et) 
DnS:playedBy(SewletCallee, WebShopSewlet) 
DnS:obligedTo(SewletCallee, GET) 

Core Ontology of Software Components (COSC) 
In the last section we have presented a Core Software Ontology consisting of 

fundamental concepts and associations such as software, data, users, policies 
and so on. We separated the fundamental concepts in a core ontology to facilitate 
reuse. 

Although some of the modelling requirements are already met by the Core 
Software Ontology, there remain further use cases that explicitly require the 
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formalization of software component and Web service idiosyncracies. In this 
section, we present a possible Core Ontology of Software Components based on 
the Core Software Ontology that meets the remaining modelling requirements 
relevant for software components, viz., Libraries and Licenses, Component 
Profiles, and Component Taxonomies (cf. the application server use cases in 
Chapter 4, Section 2.1, page 66). 

We start by formalizing our understanding of the term "software component." 
It requires special attention as there is a variety of interpretations that leads to 
ambiguity. We also put libraries and licenses in this core ontology because one 
of our use cases proposes to detect inconsistent configurations of components 
and their required libraries. Finally, we define a component profile that ag- 
gregates all relevant aspects of a component. We expect that this aggregation 
makes browsing and querying for developers more convenient. The compo- 
nent profile is envisioned to act as the central information source for software 
components rather than having bits and pieces all over the place. We finish by 
revisiting the Example 2.4 in Chapter 2, Section 3.2, and show how it can be 
formalized. 

3.1 Formalization of the Term "Software Component" 
Software componentry is a loosely defined term for a software technology 

proposing that software should be developed by glueing prefabricated compo- 
nents together as in the field of electronics or mechanics. Software compo- 
nentry also proposes encapsulating software functionality for multiple use in a 
context-independent way, composable with other components and as a unit of 
independent deployment and versioning. lo 

Software components often assume the form of object-oriented classes con- 
forming to a framework specification. However, software components differ 
from classes. The basic idea in object-oriented programming is that software 
should be written according to a mental model of the actual or imagined objects 
it represents. Software componentry, by contrast, makes no such assumptions. 

The framework specifications prescribe (i) interfaces that must be imple- 
mented by components and (ii) protocols that define how components interact 
with each other. Examples of framework specifications are Enterprise Jav- 
aBeans (EJB) and the Component Object Model (COM) from Microsoft (cf. 
also Chapter 2, Section 3.1). 

The definitions below formalize this intuition of software component as 
closely as possible. Assuming the object-oriented paradigm, (D30) below 
states that a Softwarecomponent is a special kind of CS0:Class that con- 
forms to a FrameworkSpecification. According to the definition above, a 

'O~ource: Wikipedia, http: //en. wikipedia. org/wiki/Software-component, August 2005. 
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Frameworkspecification is (i) a D0LCE:Collection of CS0:lnterfaces and 
(ii) a special kind of 0oP:Plan which specifies the interaction of components 
(cf. (D28)). Conformance means that at least one CS0:lnterface prescribed 
by the Frameworkspecification has to be implemented by the Software- 
Component (cf. (D29)). 

(D28) FrameworkSpecification(x) =def 
OoP:Plan(x) A 3y(DOLCE:Collection(y) A DnS:unifies(x, y) A 
Vz(DOLCE:member(y, z) -+ CSO:lnterface(z))) 

(D29) conforms(~, y) =d,, CSO:Class(x) A FrameworkSpecification(y) A 
3, c(CSO:lnterface(i) A DOLCE:member(c, i) A 
DOLCE:Collection(c) A DnS:unifies(y, c) -+ 
CSO:implements(x, i ) )  

(D30) SoftwareComponent(x) =d,, 
CSO:Class(x) A 3y(conforms(x, y) A FrameworkSpecification(y)) 

Coming back to our running example, we would define the Customer- 
EntityBean as a SoftwareComponent that conforms to the Enterprise- 
JavaBeans Frameworkspecification. In essence, the EnterpriseJavaBeans 
specification can be conceived as a set of Java interfaces ( j  avax . e j b . *). 

(Ex76) SoftwareComponent(CustomerEntityBean) 
(Ex77) FrameworkSpecification(EnterpriseJavaBeans) 
(Ex78) c~nf~rm~(CustomerEntityBean, EnterpriseJavaBeans) 

3.2 Libraries and Licenses 
The Library Dependencies and Versioning and Licensing use cases require 

the modelling of libraries and licenses. Both use cases discuss the problem of 
conflicting libraries and incompatible licenses in the current configuration of an 
integrated software development environment (IDE). In the case of libraries, a 
l i b1  . j ar might conflict with a lib2. j ar in a specific version. For example, 
such information can be obtained from expert knowledge or from public sources, 
such as the RPM package manager." However, the check for conflicts still 
remains a manual task. In the case of licenses, we find similar problems. 
Typically, software libraries are released under specific licenses such as GPL, 
LGPL, Apache, BSD, Public Domain, XFree86 or commercial closed source 
licenses.12 The proliferation of different software licenses means increased 
work for software developers. They have to check whether used libraries have 
conflicting licenses. 

"http: //www. rpm. org 
I2http: / /WWW. gnu. org/philosophy/license-list . html 
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Therefore, the use cases propose an automatic check for conflicting libraries 
and incompatible licenses in an integrated software development environment 
(IDE) at development time. In order to realize either use case, we introduce 
the concepts of SoftwareLibrary and License in (D31) and (D32) below. A 
SoftwareLibrary consists of a number of CS0:Classes and is classified as 
CS0:Data because it cannot be executed as a whole. The concept License 
is a special kind of Legalcontract as introduced in the Core Legal Ontology 
[Gangemi et al., 2004~1. 

(D31) SoftwareLibrary(x) =def 

CSO:Data(x) A Vc(DOLCE:properPart(x, c) -+ CSO:Class(c)) 
(D32) License(x) =def 

LegalContract(x) A 3y(CSO:Software(y) A DnS:involves(x, y)) 

Very often there are dependencies between libraries that are revealed only 
during run time by ClassNotFoundExceptions. For example, a library 
1 i b  1 . j ar might depend on 1 ib2. j ar which in turn depends on 1 ib3. j ar 
and so forth. It is a very tedious task to keep track of such dependencies and, 
additionally, to check whether there are conflicts between libraries in this de- 
pendency graph. In order to reason with such information, we introduce the 
following associations and axioms: First, the transitive IibraryDependsOn in 
(A17) and (A 18) below. Second the symmetric IibraryConflictsWith in (A19) 
and (A20). Finally, (A21) formalizes indirect conflicts. 

The existence of incompatible licenses further complicates the situation. 
Even though libraries in the dependency graph do not conflict, they might have 
incompatible licenses. In order to reason with such information, we further 
introduce the association releasedunder between SoftwareLibraries and Li- 
censes in (A22), as well as the symmetric licenselncompatibleWith in (A23) 
and (A24). 
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As an example, let us assume the CustomerEntityBean requires 
1 ib 1 . j ar. Adding 1 ib 1 . j ar to the classpath in turn requires 1 ib2 . j ar  and 
lib4. jar. Adding lib2. jar  to the classpath additionally requires lib3. jar. 
Furthermore, let us assume that lib4. jar conflicts with lib3. jar. Despite 
the small number of libraries, the situation becomes quite complex. Compiling 
and running the application will yield a run time exception. Given the mod- 
elling below we can infer libraryConflictsWith(libl.jar, lib4.jar) because of 
(A1 8), (A20) and (A21). 

3.3 Component Profiles and Taxonomies 
So far, we have formalized several different aspects relevant for a software 

component such as interface and policy descriptions or plans. In this section we 
further aggregate the knowledge in component profiles. We expect that such 
an aggregation makes browsing and querying for developers more convenient. 
The component profile is envisioned to act as the central information source for 
a specific software component rather than having bits and pieces all over the 
place. Furthermore, the component profiles can be specialized and aligned in 
a taxonomy as required by the use cases Capability Descriptions, Component 
Classijication and Discovery, Automatic Generation of Web Service Descrip- 
tions, Transactional Settings and Secure Communication. 

(D33) and (A25) define a Profile as follows: First, it aggregates 
CSO:PolicyDescriptions, an OoP:Plan, the required SoftwareLibraries, the 
implemented Interfaces and additional Characteristics of a specific Software 
entity. Second, the link to the described Software is specified via the describes 
association. (D34) specializes this definition to ComponentProfile. 

Often, we need to express certain capabilities or features of components, 
such as the version, transactional or security settings. For this purpose, we in- 
troduce Characteristics on a Profile in (D35). It is expected that Component- 
Profiles are specialized and put into a taxonomy. For example, we might de- 
fine a DatabaseConnectorProfile as a ComponentProfile that provides for 
specific Characteristics describing whether the underlying database supports 
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transactions or SQL-99. A taxonomic structure further accommodates the de- 
veloper in browsing and querying for ComponentProfiles in his system. 

Finally, (A26) specifies the profiles association as a "catch-all" for 
DnS:defines, DnS:unifies, OIO:about, as well as 0IO:expressedBy. This 
is done for convenience in order to relieve the developer, who will certainly 
have to deal with such information, from such modelling details. 

The information grouped by a ComponentProfile might have different ori- 
gins. For example, a specific PolicyDescription might be automatically ob- 
tained from e j b- j ar . xml, while manual modelling or source code analysis 
would result in an 0oP:Plan. Hence, it is important to model also information- 
Timestamp and informationSource for parts of the ComponentProfile. We 
omit their definition because both are simple attributes with xsd : s t r i n g .  

As an example, we construct a profile for our CustomerEntityBean below. 
We assume the bean requires l i b1  . j a r ,  implements the javax.ejb.EntityBean 
interface and has a policy description. 

(Ex88) ComponentProfile(CustomerBeanProJile) 
(Ex89) describes(CustomerBeanProfile, CustomerEntityBean) 

(Ex90) profiles(CustomerBeanProJile, 1ibl.jar) 

(Ex91) informationTimestamp(libl.jar, 050805-9:45:21) 
(Ex92) prof ile~(CustomerBeanProJi1e , javax. ejb. EntityBean) 
(Ex93) CSO:Interface(javax.ejb.EntityBean) 
(Ex94) prof ile~(CustomerBeanProJile, CustomerEntityBeanPolicy ) 
(Ex95) CSO:PolicyDescription(CustomerEntityBeanPolicy) 
(Ex96) informationsou r~e(CustomerEntityBeanPolicy ,Jile://ejb-ja~xml) 
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3.4 Example 
In this section, we revisit our running example (Example 2.1 on page 23) and 

show how it can be formalized with our ontology. We already introduced some 
of the instances in a piecemeal manner throughout the chapter. We collect the 
relevant instances to construct PolicyDescriptions and Plans so that a simple 
query can be used to detect if there are indirect permissions. An overview is 
given in Figure 7.9. 

The descriptor files of the WebShopServlet (web. xml) and the Customer- 
Enti tyBean (e j b- j ar . xml) result in two CS0:PolicyDescriptions. The 
third CS0:PolicyDescription below can be extracted from database metadata. 

CSO:PolicyDescription(WebShopSewletPolicy) 
profiles(WebShopSentletPo1icy , SewletCaller) 
CSO:PolicySubject(SewletCaller) 
DnS:playedBy(ServletCaller, anybody) 
CSO:UserGroup(anybody) 
profiles(WebShopSewletPo1icy , GET) 
CSO:ComputationalTask(GET) 
CSO:computationalRightTowards(SewletCaller, GET) 
profiles(WebShopSewletPolicy , SewletCallee) 
CSO:PolicyObject(SewletCallee) 
DnS:playedBy(SewletCallee, WebShopSewlet) 
CSO:Class(WebShopSewlet) 
DnS:obligedTo(SewletCallee, GET) 

CSO:PolicyDescription(CustomerEntityBeanPolicy) 
profiles (CustomerEntityBeanPolicy , BeanCaller) 
CSO:PolicySubject(BeanCaller) 
DnS:playedBy(BeanCaller, anybody) 
profiles(CustomerEntityBeanPolicy , CallBean) 
CSO:ComputationalTask(CallBean) 
CSO:computationalRightTowards(BeanCaller, CallBean) 
profiles(CustomerEntityBeanPolicy , BeanCallee) 
CSO:PolicyObject(BeanCallee) 
DnS:playedBy(BeanCallee, CustomerEntityBean) 
COSC:SoftwareComponent(CustomerEntityBean) 
DnS:obligedTo(BeanCallee, CallBean) 

CSO:PolicyDescription(DatabasePolicy) 
profiles(DatabasePo1icy , DatabaseModifier) 
CSO:PolicySubject(DatabaseModifier) 
DnS:playedBy(DatabaseModi$er, dbuser) 
CSO:User(dbuser) 
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profiles(DatabasePo1icy , ModifyTable) 
CSO:CornputationalTask(ModifyTable) 
CSO:cornputationalRightTowards(DatabaseModifier, ModifyTable) 
profiles(DatabasePolicy, ModifiedTable) 
CSO:PolicyObject(ModiJiedTable) 
DnS:playedBy(ModifiedTable, CustomerTable) 
CSO:Data(CustomerTable) 
DnS:obligedTo(Modi$edTable, ModifyTable) 

Source code analysis or manual modelling yields the WebShopSewlet- 
Plan and the CustomerEntityBeanPlan below. A context switch is repre- 
sented by the CS0:contextUser association between CS0:User and C S 0 : -  
ComputationalTask. 

OoP:Plan( WebShopSewletPlan) 
prof iles( WebShopSewletPlan, GET) 
profiles(WebShopSewletPlan, CallBean) 
CSO:accesses(GET, WebShopSewlet) 
CSO:executes(WebShopSewlet, CallBean) 
CSO:accesses(CallBean, CustomerEntityBean) 
CSO:contextUser(anybody, CallBean) 

OOP :Plan (CustomerEntityBeanPlan) 
profiles(CustomerEntityBeanPlan, CallBean) 
profiles(CustomerEntityBeanPlan, ModifyTable) 
CSO:executes(CustomerEntityBean, ModifyTable) 
CSO:accesses(ModifyTable, CustomerTable) 
CSO:contextUser(dbuser, ModifyTable) 

We can now define additional axioms to deduce all indirectly accessible 
resources for a user. First, Axiom (A27) infers the directly accessible resources 
r of a user u. The reader may note that axioms (A15) and (A16) on page 126 
also infer the accessible resources which are a result of group memberships. 
Second, Axiom (A28) infers indirectly accessible resources, i.e., ones that are 
a result of a call with a context switch. With (A27) and (A28) we can infer 
indirectly Accessi bleResou rce (CustomerTable , anybody) - a result which 
otherwise would require tedious manual efforts. 
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4. Core Ontology of Web Services (COWS) 
In this section we present a possible Core Ontology of Web Services to 

meet the remaining modelling requirements of service profiles and service tax- 
onomies. The Core Ontology of Web Services is based on the Core Ontology 
of Software Components presented in Section 3. We start by formalizing our 
understanding of the term "Web service," introduce the notion of service pro- 
files, revisit the motivating example (cf. Chapter 2, Section 3.2, page 30) and 
show how it can be formalized. 

4.1 Formalization of the term "Web service" 
On the one hand, Web services are often revelations of functionality resid- 

ing in a class or component. Application servers typically provide support to 
automatically access the functionality via the standardized SOAP protocol and 
the automatic generation of standardized WSDL interface descriptions. How- 
ever, the same can be done with the Java Remote Method Invocation (RMI) or 
CORBA although with different protocols and interface descriptions. On the 
other hand, a Web service can be defined as a composition of other Web ser- 
vices, e.g., by the Business Process Execution Language (WS-BPEL).'~ Again, 
this can be done with software components in common workflow engines as 
well. 

So what is the difference between a software component and a Web service? 
We argue that standardization in terms of Web protocols and descriptions seems 
to be the major distinction. In any case, Web services are mandatorily accessible 
via the SOAP protocol and expose an interface description according to WSDL. 
This is in line with one of the many existing definitions: 

"A Web service is a software system ident$ed by a URI, whose public in- 
terfaces and bindings are defined and described using XML. Its definition can 
be discovered by other software systems. These systems may then interact with 
the Web service in a manner prescribed by its definition, using XML based 
messages conveyed by internet protocols" [Booth et al., 20041 

However, there are dozens of other, partly contrary, definitions of the term 
Web service. In [Gangemi et al., 2003bl we list several definitions and conclude 

I3http: //www- 128. ibm. com/developerworks/library/specif icatiodws-bpel/ 
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that a concise axiomatization of such an overloaded term is necessary to avoid 
confusion among developers and ontology users. 

(D36) follows the definition above and specifies WebService as a special 
kind of CS0:Software which is 0IO:orderedBy a WSDLEncoding. The 
WSDLEncoding is an 0I0:lnformationEncodingSystem as defined in the 
Ontology of Information Objects. For our middleware domain, (A29) further 
constrains the intended meaning of WebService by axiomatizing that it is 
either a revelation of functionality residing in a C0SC:SoftwareComponent 
or a combined service specified by an 0oP:Plan.14 

(D36) WebService(x) =def 

CSO:Software(x) ~b'y(OIO:orderedBy(~, y) A y = WSDLEncoding) 

4.2 Service Profiles and Taxonomies 
The Analyzing Message Contexts, Selecting Service Functionality, Relating 

Communication Parameters, Aggregating Service Information and Quality of 
Service use cases require the modelling of service profiles and taxonomies. 
Similar to COSC:ComponentProfiles, we group the different descriptions 
relevant for a Web service in a ServiceProfile in (D37) below. We expect that 
such a grouping makes browsing and querying for developers more convenient. 
The information grouped by a ServiceProfile might have different origins. 
Hence, we also add informationTimestamp and informationSource as simple 
attributes to parts of the profile. We omit their definition because both are simple 
attributes with xsd : string. Furthermore, ServiceProfiles can be specialized 
and put into a taxonomy. 

ServiceProfiles differ from C0SC:ComponentProfiles in two ways: 
First, they can have QualityOfService parameters. QualityOfService 
parameters are specializations of C0SC:Characteristics and defined on 
ServiceProfiles as shown in (D38). Second, the ServiceProfile necessarily 
0IO:describes a WebService as opposed to C0SC:ComponentProfiles 
which C0SC:describe C0SC:SoftwareComponents (cf. (A29)). 

I 4 ~ o t e  that the symbol @ represents the logical xor (exclusive or) connective. 
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4.3 Example 
In this section we revisit the Example 2.4 in Chapter 2, Section 3.2, page 

30, and show how it can be formalized with our ontology. The WS-BPEL 
process description can be parsed and relevant information can be extracted 
leading to an 00 P: Plan consisting of several C o m  putationalTasks. Figure 
7.10 provides an overview. 

ServiceProfile(WebShopProji1e) 
C0SC:descr i  bes(  WebShopProjile, WebShop WS)  
WebService(WebShopWS) 
COSC:profiles(WebShopProjile, WebShopPlan) 
OoP:Plan( WebShopPlan) 
COSC:profiles(WebShopPlan, checkAccount) 
CSO:executes(WebShopWS, checkAccount) 
OoP :ComplexTask(checkAccount) 
COSC:profiles(WebShopPlan, CallVisaWS) 
OoP:ComputationalTask(CallVisaWS) 
COSC:profiles( WebShopPlan, CallMastercardWS) 
OoP:ComputationalTask(CallMastercardWS) 
WebService(VisaWS) 
WebService(MastercardWS) 
0oP:successor(checkAccount, CallVisa WS)  
0 o P : ~ ~ ~ ~ e ~ ~ 0 r ( c h e c k A c c o u n t ,  CallMastercardWS) 
CSO:accesses(CallVisaWS, Visa WS)  
CSO:accesses(CallMastercardWS, MastercardWS) 

Furthermore, the WS-Policy document of the external Mastercard service 
(cf. Example 2.5 on page 30) can be parsed and a corresponding CS0:Policy- 
Description created. Chapter 9, Section 3, discusses the procedure of how to 
obtain the instances below from WS-Policy documents. 

ServiceProfile(MastercardProji1e) 
COSC:describes(MastercardPro$le, MastercardWS) 
COSC:profiles(MastercardProjile, MastercardPolicy) 
CS0:PolicyDescription (MastercardPolicy) 
COSC:profiles(MastercardPolicy, MastercardCaller) 
CSO:PolicySubject(MastercardCaller) 
DnS:playedBy(MastercardCaller, anybody) 
CSO:UserGroup(anybody) 
COSC:profiles(MastercardPolicy , CallMastercardWS) 
CSO:computationalRightTowards(MastercardCaller, CallMastercardWS) 
COSC:profiles(MastercardPolicy , MastercardCallee) 
CSO:PolicyObject(MastercardCallee) 
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DnS:playedBy(MastercardCallee, MastercardWS) 
COSC:pr~file~(MastercardPolicy, AuthenticationProtocol) 
CSO:Constraint(AuthenticationProtocol) 
DnS:requisiteFor(AuthenticationProtocol, CallMastercardWS) 
DnS:valuedBy(AuthenticationProtocol, AuthenticationProtocolValue) 
AuthenticationProtocolValue(~) -+ DOLCE:AbstractRegion(~) 
AuthenticationProtocolValue(Kerberos) 
AuthenticationProtocolValue(X509) 

We can now introduce axiom (A30) below to infer all WebServices which 
CS0:invoke other WebServices with attached CS0:PolicyDescription. 
With (A9)  on page 123 and executes(WebShopWS,checkAccount), 
O ~ P : ~ ~ ~ ~ e ~ ~ ~ r ( c h e c k A c c o u n t ,  CallMastercardWS) and 
CS0:accesses  (CallMastercardWS, MastercardWS) we can entail 
invokesWebServiceWithPoli~y(WebShopWS, MasterCardWS). With- 
out semantic management, obtaining this result would require tedious manual 
analyses of the WS-BPEL and WS-Policy descriptors. 

(A30) invokesWebServiceWithPolicy(x, y) t 
CSO:invokes(x, y)  A WebService(x) A WebService(y) A 
COSC:describes(sp, y)  A ServiceProfile(sp) A 
COSC:profiles(sp, pd) A CSO:PolicyDescription(pd) 

5. Proof of Concept 
The chapter proposed the design of an appropriate management ontology. 

We have defined appropriateness at the beginning of the chapter as follows: ( i )  
the management ontology should meet all the modelling requirements derived 
from our use cases, (ii) it should achieve high quality according to the ontology 
quality criteria and (iii) it should enable reuse in specific platforms and reduce 
modelling efforts to a minimum. In this section, we detail where and how our 
management ontology responds to (i) ,  (ii) and (iii). 

5.1 Meeting the Modelling Requirements 
Tables 7.1 and 7.2 summarize which parts of the management ontology meet 

the requirements. The requirements comprise modelling ( i )  libraries, licenses, 
component profiles, component taxonomies, API descriptions, semantic API 
descriptions, access rights and workjlow information of software components 
and (ii) service profiles, sewice taxonomies, policies, workjlow information, 
API descriptions, as well as semantic API descriptions of Web services. 
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Table 7.1. Modelling requirements for software components and the parts of the management 
ontology that meet the requirements. 

Table 7.2. Modelling requirements for Web services and the parts of the management ontology 
that meet the requirements. c-' 

5.2 Higher Quality 
Besides meeting the requirements, a remaining question has been 11.2: How 

to ensure high quality? Throughout the axiomatization, we have approximated 
the intended models of our universe of discourse as closely as possible. In 
particular, we have strived to avoid the typical shortcomings of common on- 
tologies as outlined in Chapter 5,  Section 3, viz., conceptual ambiguity, poor 
axiomatization, loose design and narrow scope. In the following we give some 
examples how the shortcomings are eliminated. 

Conceptual Disambiguation 
We have learned in Chapter 5, Section 3.1, that common ontologies such as 

OWL-S [Martin et al., 20041 and our initial ontology of software components 
[Sabou et al., 20041 suffer from conceptual ambiguity. An example is the notion 
of OWL-S:Service which is defined twice and differently in the specification. 
In turn, both definitions stand in conflict with the axiomatization of the concept 
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in the ontology. In our initial ontology of software components, we have found 
a similar dilemma regarding the plethora of meanings and definitions of terms, 
such as component, software component or software module. Both ontologies 
fail to convey their intended meanings of such terms and leave the interpretation 
to the ontology user. 

In contrast to such commonly built ontologies we have captured the intended 
meanings of concepts and associations as precisely as possible. Our definition 
of terms such as Web service (Definition (D36) on page 137) or software com- 
ponent (Definition (D30) on page 129) are in line with the natural language 
definitions prevailing in the middleware community. Comparing both defini- 
tions makes evident that very few concepts actually differ when "upgrading" 
from software components to Web services. Only minor extensions to the Core 
Software Ontology are required to capture the differences between software 
components and Web services. 

While our definitions of the terms Web service and software component may 
not be the only ones, the fact that they are highly axiomatized allows comparing 
them to alternative definitions and allows fostering discussions on alternative 
conceptualizations. We argue that this will enable mutual understanding which 
is crucial for information integration of any kind. 

Increased Axiomatization 
Common ontologies are often reduced to a simple taxonomy with domain and 

range restrictions on associations. OWL-S and our initial ontology of software 
components are no exceptions as demonstrated in Section 3.2 of Chapter 5. 
An example are the OWL-S:ControlConstructs which define how composite 
processes are combined. 

In our management ontology we have made use of the Ontology of 
Plans which provides extensive axiomatization of 0oP:Tasks and subcon- 
cepts thereof. 0oP:Tasks are directly comparable to the OWL-S:Control- 
Constructs, but provide a heavyweight axiomatization. An example is 
SynchroTask (an instance of 0oP:ControlTask) which matches the concept 
of OWL-S:Join in the OWL-S:SplitJoin control construct. A SynchroTask 
joins a set of tasks after a branching and waits for the execution of all (except 
the optional ones) tasks that are direct successors to a ConcurrencyTask or Any- 
OrderTask. Below we give the axiomatization of the SynchroTask as introduced 
in [Gangemi et al., 2004bl. 

ControlTask(SynchroTask) -+ 3tl ,  tz, t3 (tl = ConcurrencyTask V tl = 
AnyOrderTask) A S U C C ~ S S O ~ ( ~ ~  , x) A (ComplexTask(t2) V ActionTask(t2)) A 
(ComplexTask(t3) V ActionTask(t3)) A directSuccessor(t2, SynchroTask) A 
directSuccessor(t3, SynchroTask) 



An Ontological Formalization of Software Components and Web Services 143 

Another example is the OWL-S:components association, which is used to 
relate OWL-S:ControlConstructs to their components. In OWL-S this asso- 
ciation is described merely as a subrelation of owl:Property with a domain 
of OWL-S:ControlConstruct. The Ontology of Plans exploits the D0LCE:- 
temporaryComponent association which has a firm foundation as a special 
kind of the more basic D0LCE:component mereological association and 
D0LCE:partlyCompresent temporally indexing association. Both are char- 
acterized by formal restrictions on their application to other basic concepts. 

Improved Design 
In our management ontology we propose to use contextualization as a de- 

sign pattern. Contextualization allows us to move from monolithic component 
or service descriptions to the representation of different, possibly conflicting 
views with various granularity. The Descriptions & Situations ontology module 
provides us with the basic primitives of context modelling such as the notion 
of roles, which allows us to talk about inputs and outputs on the abstract level, 
i.e., independent of the objects that play such roles. 

Description 

Figure 7.11. Solution to the attribute binding problem. Data can play both the role of an Input 
and an Output at the same time. Inputs and Outputs can be linked to ComputationalTasks in 
a Plan. White classes represent descriptive entities, grey classes represent ground entities. 

Using this pattern results in a much more intuitive representation of attribute 
binding than in OWL-S with clearly defined semantics and scoping provided by 
Descriptions & Situations. Attribute binding in OWL-S is necessary to express, 
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e.g., that the output of a process is the input to another process as presented in 
Figure 5.4 on page 90. In our ontology, inputs and outputs can be modelled 
as DnS:Roles which serve as variables. Thus, CS0:Data can play multiple 
roles within the same or different descriptions. It is natural to express that the 
given CS0:Data is output with respect to one process, but input to another (cf. 
Figure 7.1 1). 

Wider Scope 
As we have seen in Chapter 5, Section 3.4, components and services exist on 

the boundary of the world inside an information system and the external world. 
Web services, in particular, may carry out operations to support a real-world 
service. Functionality, which is an essential property of a service, then arises 
from the entire process that comprises computational, as well as real-world 
activities. 

The distinction between information objects, events and physical objects is 
not explicitly made in most ontologies. In our management ontology this sepa- 
ration naturally follows from the use of DOLCE and the Ontology of Informa- 
tion Objects, where the distinction is an important part of the characterization of 
concepts. In particular, it becomes possible to be more precise about the kinds 
of relationships that can occur among objects or between objects and events. 

Figure 7.12. Using the Ontology of Information Objects allows us to model the relationship 
between a user in an information system and its corresponding agent (e.g., a natural person). 

For example, we can distinguish among a physical object (such as a natural 
person), an information object (such as user in an information system) and 
represent the link between them. The capabilities provided by our ontology 
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are shown in Figure 7.12. It is worthwhile to explicate such differences, e.g., 
when we want to infer the total of access rights granted for a natural person 
who might have several users in and across information systems. 

5.3 Enabling Reuse 
Finally, we have designed the management ontology in a way to be platform- 

independent and as specific as possible at the same time. The answer to the 
corresponding research Question 11.3 How to decrease modelling efforts and 
enable reuse? is to have a core ontology that can easily be reused and specialized 
in a concrete platform. 

The following three steps have to be taken in order to allow for reuse in a 
specific platform: ( i )  specialization of the core concepts and associations to 
reflect the idiosyncracies of the platform. For example, we have to introduce 
EnterpriseBean as a special kind of C0SC:SoftwareComponent in a J2EE- 
based platform. The result of this step is a domain, reference and heavyweight 
version of our management ontology. Step (ii) removes concepts and associa- 
tions that have been introduced merely for reference purposes. As an example, 
it is unlikely and not required to model particular ComputationalObjects or 
ComputationalActivities for the reasoning at run time. Both were introduced 
to better explain concepts such as Software or Data. The result is a domain, 
application and heavyweight version. Finally, step (iii) requires a decision for 
an executable ontology language that can be reasoned with at run time. Ac- 
cordingly, the axiomatization has to be adapted to this language. This might be 
a description logic, such as OWL DL, which is less expressive than the modal 
logic S5. The result of this step is a domain, application and lightweight version 
of the management ontology. 

In fact, Part I11 reuses and specializes the management ontology according 
to the three steps. After designing and implementing an ontology-based appli- 
cation server in Chapters 8 and 9, Chapter 10 discusses the three steps in more 
detail. 

6. Summary 
In this chapter we have been concerned with the design of an appropriate 

management ontology founded on a modelling basis. The modelling basis 
consists of DOLCE and three of its modules, viz., Descriptions & Situations, 
the Ontology of Plans and the Ontology of Information Objects. All of them 
have been introduced in Section 1. Subsequently, we have contributed a Core 
Software Ontology Section 2, which formalizes fundamental concepts of the 
computational domain. The Core Software Ontology acts as a common basis 
for the Core Ontologies of Software Components and Services which have been 
built in Sections 3 and 4, respectively. Finally, Section 5 showed ( i )  where we 
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have met the modelling requirements derived from our use cases, (ii) how we 
have achieved high quality according to our ontology quality criteria and (iii) 
how we have enabled reuse in specific platforms. 

In contrast to commonly built ontologies we have avoided their typical short- 
comings of conceptual ambiguity, poor axiomatization, loose design and nar- 
row scope. We have captured the intended meanings of concepts and association 
as precisely as possible. Our definition of terms such as "software component" 
or "Web service" are in line with the natural language definitions prevailing 
in the middleware community. Comparing both definitions makes evident that 
very few concepts actually differ when "upgrading7' from software components 
to Web services. We argue that our concise axiomatization will enable mutual 
understanding which is crucial for information integration of any kind. 



PART I11 

REALIZATION OF SEMANTIC MANAGEMENT 



Chapter 8 

DESIGN OF AN 
ONTOLOGY-BASED APPLICATION SERVER 

In Part I1 we have been concerned with answering the Main Question 11: 
How to build a suitable management ontology? As a result, we have obtained 
a high-quality management ontology with reference, heavyweight and core 
characteristics, that meets all the modelling requirements derived from the use 
cases in Chapter 4, Section 2, page 65. 

The ontology is a contribution in its own right. We have disambiguated 
overloaded terms such as "software component" or "Web service" by a concise 
axiomatization, making the ontology ideal for reference purposes. However, 
the ontology is merely a passive object. An inference engine is required to 
enable querying and reasoning with the semantic descriptions of components 
and services. In most cases, inference engines are based on logic calculi, which 
basically consist of a set of syntactic derivation rules. Furthermore, a whole 
infrastructure is required to embed the inference engine in and to obtain, model 
and use the semantic descriptions. We have to choose a specific platform and, 
ideally speaking, an existing ontology tool suite. Additional steps are required 
to reuse our management ontology in this specific platform and to adapt it to 
the idiosyncracies of the tool suite. It is the purpose of this part to elaborate on 
all these issues as a response to the Main Question I11 from the Introduction: 
How to realize semantic management of middleware? 

We begin this chapter by discussing general design issues. In Section 1, 
we elicit where to apply the inference engine, thus answering the Question 
111.1: What is a suitable target platform? Besides the obvious platform of 
an application server, the inference engine can also be applied in workflow 
management systems, software IDE's, Web service composition engines and 
a lot more. Eventually, we choose an application server because many use 
cases can be realized. Section 1 also answers the Question 111.2: Who provides 
semantic descriptions? The number of manually provided descriptions has 
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to be kept as small as possible because developers and administrators do not 
want to adopt additional tasks. Hence, we elicit further options on how to 
arrive at semantic descriptions of components and services. We continue in 
Section 2 by designing an ontology-based application server in a piecewise 
manner. This comprises a careful elicitation of requirements and, subsequently, 
meeting the requirements by a suitable architecture. Section 2 concentrates on 
the semantic management of software components, whereas Section 3 focuses 
on the semantic management of Web services. Basically, the realization of 
semantic management of Web services boils down to an extension of the server. 

Parts of this chapter have been published in conference proceedings and 
journals. The requirements for the application server, as well as its architecture, 
are taken from [Oberle et al., 2005dl and [Oberle et al., 2004a,Oberle, 20041, 
respectively. Possible platforms and the elicitation on how to apply the inference 
engine originate from [Oberle et al., 2005al. 

1. General Design Issues 
Our management ontology meets the modelling requirements put forward 

in our use cases (cf. Chapter 4, Section 2). We have concisely defined its 
concepts and associations by a rich axiomatization. For every ontology-based 
application, however, an inference engine is required to enable the querying 
and reasoning with semantic descriptions. An inference engine (also known as 
reasoner) implements a calculus for the underlying logic which is defined by 
a set of syntactic derivation rules. The general purpose of the inference engine 
is to derive answers from semantic descriptions and to check an ontology for 
consistency. [Horrocks and Patel-Schneider, 20041 

In this section, we discuss where to apply the inference engine in 1.1, followed 
by an elicitation of potential sources of semantic descriptions in 1.2. Finally, 
we discuss how to integrate the inference engine in the middleware control in 
Section 1.3. 

1.1 Possible Platforms 
The first set of use cases presented in Chapter 4, Section 2, mainly focus on 

the semantic management of software components. It is the primary choice to 
integrate the inference engine in an application server to realize this set of use 
cases because application servers typically foster component-based software 
development. However, this section discusses additional platforms for two 
reasons: (i) the platform for the second set of use cases, i.e., the ones dealing 
with Web services, is not obvious at all and (ii) other platforms may benefit as 
well from semantic management, making it worthwhile to elaborate on them. 

Application Servers We have already discussed application servers in Chapter 
2, Section 3.1. Application servers are ideal as a platform to integrate the 
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semantic management of software components. In addition, they typically 
provide Web service support and, thus, can also be considered for some of 
the Web service use cases. The inference engine cannot only become an 
integral part of J2EE-based application servers, such as IBM Websphere or 
JBoss, but also of Microsoft .NET. 

Software IDE's An integrated development environment (IDE) is an applica- 
tion or a set of tools that allows a programmer to write, compile, edit and, in 
some cases, test and debug within an integrated, interactive graphical user 
interface. The most prominent examples are Eclipse, JBuilder or Microsoft 
Visual Studio. 

IDE's are possible platforms because some of the use cases require infor- 
mation about the source code. The internal datamodels of the IDE can be 
leveraged to obtain such information. Information about calls or excep- 
tions can be easily obtained and integrated into the ontology as semantic 
descriptions. 

Application Management Systems The infrastructure that manages the 
whole bandwidth from network monitoring to software distribution to the 
desktop is called an enterprise application management system. Examples 
of commonly used application management systems are HP OpenView, 
Computer Associates Unicenter and IBM Tivoli. 

Such systems are a possible target platform because management of 
middleware-based applications is a part of application management (cf. re- 
lated work in Chapter 11, Section 1 for a detailed discussion). Some of 
our use cases of semantic management of middleware are shared by the 
application management use cases. 

Web Service Management Systems Application management is currently 
extended to Web services. Web services management defines the man- 
ageability model for managing Web services as a resource and explains how 
to describe and access that manageability (cf. also related work in Chapter 
11, Section 1). 

Such management systems share some of our use cases. Integrating seman- 
tic technology makes them even more powerful by reasoning capabilities. 
It is thus worthwhile to regard them as a possible platform. Existing appli- 
cation management systems, such as HP OpenView, already support Web 
services management. 

Workflow Management Systems Workflow management systems (WfMS) 
facilitate the definition and maintenance of the integration logic of dis- 
tributed applications (cf. Chapter 2, Section 3.1). Business processes are 
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formally defined as a workflow and executed by a workflow engine. Work- 
flows are seen as software building blocks for "programming in the large" 
because they compose large software modules which are typically entire 
applications. Examples of leading commercial workflow systems include 
IBM Websphere MQ Workflow and Microsoft BizTalk Orchestration. 

Reasoning with workflow information is proposed by some of the use cases 
in Chapter 4, Section 2. Therefore, workflow management systems can 
also benefit from semantic technology to facilitate the management of some 
tasks. 

Web Service Composition Engines Web service composition engines are 
similar to workflow management systems and mainly use WS-BPEL (cf. 
Chapter 2, Section 3.2) as a process specification language. Correspond- 
ing BPEL-engines care for executing the composite services. Examples 
are  active^^^^,' ~ e x e e ?  or the BPEL engines that ship with application 
servers. 

We believe that Web service composition engines are the primary choice as 
a platform for the semantic management of Web services. The reason is that 
they allow for the realization of all of the Web services use cases introduced 
in Chapter 4, Section 2. 

For the remainder of this part we limit ourselves to the integration of an 
inference engine in an application server. We do so because of the following 
reasons: (i) although a Web service composition engine allows realizing all 
the Web services use cases, it is not suited for the semantic management of 
software components. Regarding both the semantic management of software 
components and of Web services, application servers allow the realization of 
most of our use cases. (ii) the scenario discussed in Chapter 4, Section 1.1, on 
page 57, proposes an Application Sewer for the Semantic Web which we build 
in the remainder of this chapter. 

1.2 Obtaining Semantic Descriptions 
After having decided where to use the inference engine, namely, in an appli- 

cation server, it is necessary to elaborate on the Question 111.2: Who provides 
semantic descriptions? Manual modelling efforts have to be kept as small as 
possible because the developer does not want to adopt further tasks when he 
or she already is overburdened by the complexity of the middleware. We have 
been elaborating on this issue at the beginning of Chapter 4 where Figure 4.1 on 
page 56 introduces the trade-off between management and modelling efforts. 

'http: //www . activebpel . org/ 
'http: //bexee . sourcef orge . net 
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It is necessary to identify potential sources which allow us to (semi) auto- 
matically obtain semantic descriptions. Obtaining comprises: (i) reading and 
parsing of the source, (ii) extraction of relevant information and (iii) integrating 
this information as semantic descriptions into the inference engine and ontol- 
ogy. This is quite a simple task given that most descriptors are in XML syntax. 
Also, the implementation of such mappings has to be undertaken only once. 
We provide ideas for potential sources as follows: 

Manual Modelling The amount of semantic descriptions that are provided 
manually by the software developer must be minimal because software de- 
velopers will not be very willing to adopt a large new paradigm at a time when 
they are just getting used to deployment and WS* descriptors. However, 
not all aspects can be obtained from existing sources. Additional manual 
modelling will always be required, e.g., to establish the link between users 
in an information system and the corresponding natural person. Additional 
manual modelling is realized by ontology editors and is supplementary to 
the other possibilities. 

Deployment and WS* Descriptors A great deal of semantic descriptions can 
be obtained from deployment and WS* descriptors. It is a one-off endeavor 
to code the obtaining of such descriptors (i.e., to code the parsing, the ex- 
traction of relevant tags and the mapping from the tags to concepts and 
associations of our management ontology). In Chapter 9, Section 3, on 
page 180, we sketch an example for a mapping from WSDL, WS-BPEL 
and WS-Policy descriptors to concepts and associations of the management 
ontology. 

Source Code Annotations Recently, source code annotations have become a 
popular method to supplement or even replace XML descriptors. Source- 
code annotations are of advantage because of the simpler maintenance. 
XDoclet is an example. It integrates information from different deploy- 
ment descriptors in JavaDoc comments [Walls and Richards, 20031. If 
XDoclet is put in place, the tags can be parsed and integrated instead of 
the several deployment descriptors they replace.3 Very similar to the idea 
of XDoclet, the recent JSR 181, entitled "Web services metadata for the 
Java platform" [Trezzo and Mihic, 20041, defines a standard way to build 
and deploy Web Services without learning and implementing generalized 
API's and deployment descriptors. Proprietary efforts, such as JBoss.Net 
and also Microsoft's .NET IDE, take a similar approach. Furthermore, Java 
5.0 standardized the syntax of JavaDoc annotations, which further simplifies 
obtaining such information. 

3http: //xdoclet . sourcef orge . net/xdoclet/index . html 
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Programme Code Software IDE's internal data models are aware of how ex- 
ceptions are thrown, invocations across classes, required libraries and a lot 
more. The IDE's maintain and use this information in their internal data- 
models. For an open-source IDE such as Eclipse, it is fairly simple to write 
a plug-in that obtains such information. 

Application Management Descriptors Application Management Systems 
obtain information about managed applications and resources in the form 
of Management Information Bases (MIB). MIB's are databases that contain 
the hierarchical order of all of the managed objects. Each managed object 
in a MIB has a unique identifier. The identifier includes the type (such as 
counter, string, gauge or address), access level (such as readlwrite), size 
restrictions and range information of the object. Similarly, the Common 
Information Model (CIM) is a data model of an implementation-neutral 
schema for describing overall management information in an enterprise en- 
vironment. Some of the information stored there can also be obtained for 
our purposes (cf. related work in Chapter 11, Section 1.2, for a detailed 
discussion). 

Semi-automatic Annotation [Patil et al., 2004, Hess and Kushmerick, 
2003, Agarwal et al., 20041 introduce frameworks for the semi-automatic 
generation of semantic descriptions of Web services. For example, they 
propose a matching algorithm between the XML-Schema types of a WSDL 
description and a given domain ontology. The approaches are very promis- 
ing to semi-automatically obtain semantic descriptions. 

1.3 How to Integrate the Inference Engine? 
In the previous section, we have identified potential sources for obtaining 

semantic descriptions. The next step is to elaborate on the different ways of 
using the inference engine. The different possibilities of how to integrate the 
inference engine into the middleware control are discussed in the following 
paragraphs. They clarify the different usages for building our ontology-based 
application server. Note that the approaches can be realized in parallel. 

Reverse Engineering The reverse engineering approach is non-invasive and 
does not intervene in the existing infrastructure, i.e., existing descriptor files 
are still fed into their corresponding engines (e.g., into EJB containers or 
Web service composition engines). It is still necessary for the developer 
to familiarize and work with all the descriptor files. However, they are 
parsed and integrated into the inference engine by a metadata collector (cf. 
Figure 8.1). Hence, the developer is enabled to query and reason with such 
information. 
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Figure 8.1. The reverse engineering approach applies a metadata collector to obtain semantic 
descriptions, i.e., to parse potential sources, extract relevant information from them and integrate 
them into the inference engine and ontology. 

Model-Driven Deployment (MDD) In this approach, semantic descriptions 
are used to generate the component and WS* descriptors. The idea is to 
have one common information source, viz., the inference engine and ontol- 
ogy, which centralize maintenance instead of having dozens of deployment 
and WS* descriptor files. The developer and administrator do not have to fa- 
miliarize and to maintain the descriptor files. The descriptors are generated 
automatically from the semantic descriptions of components and services. 
Querying and reasoning with the management ontology for the developer 
and administrator is possible, too. The descriptor files are still fed into their 
corresponding engines. 

Deployment 
descriptors 

WS* 
descriptors 

Figure 8.2. The model-driven deployment approach generates the descriptor files out of the 
inference engine and ontology 
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We call this approach model-driven deployment as it is similar to the idea 
of model-driven architectures [Mellor et al., 20041, where a platform- 
independent conceptual model is used to generate platform-specific code. 
It is also similar to the approach of XDoclet [Walls and Richards, 20031. 
XDoclet is an open source code generation engine. It enables "attribute- 
oriented programming" for Java. XDoclet parses source files and generates 
deployment descriptors or source code from them. These files are generated 
from templates that use the information provided in the source code and its 
JavaDoc tags. 

Ontology Run Time The last approach, labelled ontology run time, disposes 
the idea of several descriptor files and sets the inference engine and ontol- 
ogy as central information source in an application server. The remaining 
infrastructure, such as EJB containers or Web service composition engines, 
has to be adapted accordingly. That means required information is read 
from the inference engine and ontology and not from deployment descrip- 
tors. Putting aside the additional effort of adapting the infrastructure, run 
time information (e.g., dynamic quality of service parameters) can now be 
integrated and reasoned with, too. 

Semantic 
descriptions 

Figure 8.3. Thc ontology run time approach disposes the idea of descriptor files and puts the 
inference engine and ontology as central information source in the application server. 

2. Semantic Management of Software Components 
So far, we have decided to apply the inference engine in an application server, 

have identified potential sources for the semantic descriptions and have clarified 
the different ways of using the inference engine. In this section, we propose a 
way to realize the semantic management of software components by designing 
an ontology-based application server. We first identify requirements for such 
a server in Section 2.1. We continue by deriving the design in a piecemeal 
manner in 2.2,2.3 and 2.4. The resulting server is rather generic but provides a 
number of components to support the application development for the Semantic 
Web. 
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2.1 Requirements 

Requirements for our ontology-based application server for the Semantic 
Web are twofold. On the one hand, they are derived from our scenario in- 
troduced in Chapter 4, Section 1.1, on page 57. On the other hand, they are 
derived from the use cases in Chapter 4, Section 2.1, on page 65 that focus on 
the semantic management of software components. 

The scenario introduced in Chapter 4, Section 1. I, deals with the particular 
situation of application development for the Semantic Web. An infrastructure 
is required that facilitates plug'n'play engineering of ontology-based software 
modules and, thus, the development and maintenance of comprehensive Se- 
mantic Web applications. We propose the design of an Application Server for 
the Semantic Web (ASSW), extending the functionality of common application 
servers by supporting application development for the Semantic Web. The aim 
is to facilitate the reuse of existing software modules, e.g., ontology stores, 
editors or reasoners, to coordinate the information flow between such mod- 
ules, to broadcast events between different modules and to translate between 
ontology-based data formats. 

The requirements derived from the scenario can be grouped as follows: First, 
such a server should respond to the static aspects of the Semantic Web layer cake 
(cf. Figure 4.2 on page 58). Second, the Semantic Web's dynamic aspects (also 
depicted in Figure 4.2 on page 58) result in another group of requirements, viz., 
finding, accessing, modifying and storing of data, transactions and rollbacks, 
evolution and versioning, monitoring, as well as inferencing and verification. 
Third, clients, e.g., portal applications or ontology editors, may want to connect 
remotely to the server by different protocols and must be properly authorized. 
Hence, another group deals with connectivity and security. Fourth, the system 
is expected to facilitate an extensible and reconfigurable infrastructure. This 
set of requirements, therefore, deals with the flexible handling of modules. 

The use cases introduced in Chapter 4, Section 2.1, deal with the semantic 
enhancement of the server, which poses a fifth group of requirements. In the 
following sections, we investigate the groups organized in requirements specific 
to the Semantic Web, common requirements, i.e., requirements that hold for ev- 
ery application server, and requirements that call for the semantic enhancement 
of the server itself. 

Semantic Web Specific Requirements 

Requirements Stemming from the Semantic Web's Static Part 

The static part of the Semantic Web is introduced in Figure 4.2 on page 58. In 
essence, the static part defines a stack of languages with increasing modelling 
capabilities. The requirements below follow straightforwardly from this stack. 



158 SEMANTIC MANAGEMENT OF MIDDLEWARE 

w Language Support A trivial requirement is the support of all the Seman- 
tic Web's ontology and metadata standards. An application server for the 
Semantic Web has to be aware of RDF, RDFS, OWL, as well as future 
languages that will be used to specify the logic, proof and trust layers. 

Semantic Interoperation We use the term semantic interoperation in the 
sense of translating between different ontology languages with different 
semantics. Although the languages of the Semantic Web's static part are 
standardized and compatible with each other, there remain many widespread 
proprietary efforts, such as F-Logic [Kifer et al., 19951 or KAON [Maedche 
et al., 20031, which have to be supported. Hence, an application server for 
the Semantic Web should enable translation between different languages 
and semantics [Grosof et al., 2003, Bennett et al., 20021. 

w Ontology Mapping In contrast to semantic interoperation, ontology mapping 
translates between different ontologies of the same language. Mapping may 
become necessary as Web communities usually have their own ontology and 
could use ontology mapping to facilitate data exchange [Ehrig and Staab, 
2004, Noy and Musen, 2000, Handschuh et al., 2003, Euzenat, 20041. 

Ontology Modularization Modularization is an established principle in soft- 
ware engineering. It has to be considered also for ontology engineering as 
the development of large domain ontologies often includes the reuse of sev- 
eral existing ontologies. For example, foundational ontologies might be 
used as a starting point. Hence, an application server for the Semantic Web 
should provide means to meet that requirement [Stuckenschmidt and Klein, 
2004, Volz et al., 2002, Borgida and Serafini, 2002, Maedche et al., 20031. 

Requirements Stemming from the Semantic Web's Dynamic Part 
The dynamic part of the Semantic Web is also introduced in Figure 4.2 on 

page 58. Every dynamic aspect yields a corresponding requirement. 

w Finding, Accessing, Modifying and Storing of Ontologies Semantic Web 
applications such as search engines (e.g., http : //swoogle . umbc . edu/), 
editors or portals, have to access, modify and finally store ontological data. 
In addition, the development of domain ontologies often requires other on- 
tologies as starting points. Examples are the foundational ontologies intro- 
duced in Chapter 6, Section 2. Those can be stored and offered by the server 
to editors. 

Transactions and Rollbacks The dynamic aspects transactions and rollbacks 
lead to further requirements. All updates to the Semantic Web data must be 
done within transactions assuring the properties of atomicity, consistency, 
isolation (concurrency) and durability (ACID) [Ullman, 19881. Although, in 
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general, transactions can be considered as a common requirement, they can 
become specific as the Semantic Web languages require special handling. 

H Evolution and Versioning Ontologies are applied in dynamic environments 
with changing application requirements (cf. [Stojanovic et al., 2002bl). The 
underlying ontology must be evolved as well to apply the changes. Ontology 
evolution and versioning has its roots in database research. Evolution is the 
ability to change a schema of a populated database without loss of data 
(i.e., providing access to both old and new data through the new schema). 
Schema versioning is the ability to access all the data (both old and new) 
through different version interfaces. [Peters and Oezsu, 1997,Banerjee et al., 
1987, Stojanovic et al., 2002a, Noy and Klein, 2002, Volz et al., 2003el 

= Monitoring Monitoring can be regarded as the process of checking, observ- 
ing or keeping track of application data for a specific period of time or at 
specified intervals. An example are web logs of portals which help site ad- 
ministrators to identify traffic, possible bandwidth problems, broken links, 
etc. However, because the primary focus of this kind of usage recording 
is technical, an interpretation of URLs in terms of user behavior, interests, 
and intentions, is not always straightforward. In order to obtain meaningful 
results, the Web logs must contain the semantics of the pages visited along 
user paths. [Oberle et al., 2003al 

= Inferencing and VeriJication Inference engines are core components of 
ontology-based applications and can be used for several tasks such as seman- 
tic validation and reasoning. An application server for the Semantic Web 
should provide access to such engines, which can deliver the reasoning ser- 
vices required. This requirement is not to be confused with the inferencing 
done in the server itself (cf. the requirements for the semantic enhancement 
of the server below). 

Common Requirements 
Common requirements are ones that essentially hold for every application 

server. We list them here for the sake of completeness. 
Connectivity and Security 

H Connectivity An application server should enable loose coupling, allowing 
access through standard protocols, as well as close coupling by embedding 
it into an application. In other words, a client should be able to use the 
system locally and connect to it remotely. 

H Ease of Use A developer does not want to expend extra effort in connecting 
to and using a software component when an application server is applied. 
A software component ought to be accessed seamlessly. 
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Offering Functionality via Different Communication Protocols There might 
be the need to offer a software component's functionality via another com- 
munication protocol. For instance, the application server should be able to 
offer its methods via separate Web services, via peer or agent protocols. 

Security Guaranteeing information security means protection against unau- 
thorized disclosure, transfer, modification or destruction, whether acciden- 
tal or intentional. To realize it, any operation should only be accessible by 
properly authorized clients. Proper identity must be reliably established by 
employing authentication techniques. Confidential data must be encrypted 
for network communication and persistent storage. 

Flexible Handling of Modules 

Extensibility The need for extensibility applies to most software systems. 
It is a principle of software engineering to avoid system changes when ad- 
ditional functionality is needed in the future. Hence, extensibility is also 
desirable for an application server. In addition, our scenario deals with the 
multitude of layers and data models in the Semantic Web that lead to a mul- 
titude of software modules, e.g., XML parsers or validators that support the 
XML Schema datatypes, RDF stores, tools that map RDFS ontologies to 
relational databases, ontology stores and OWL reasoners. Therefore, exten- 
sibility regarding new data API's and corresponding software components 
is an important requirement. 

B Integrating Existing Functionality via Different Communication Protocols 
A developer might want to integrate different kinds of software entities, e.g., 
Web services, peers or agents, required to build an application. That enables 
them to be included in a transaction, for instance, and lifts the responsibility 
of handling different protocols from the developer. 

Constraints The server should enable the expression of constraints among 
different software components, such as the setting up of event listeners 
between components. Another example is the management of a dependency, 
such as "component A is required for component B." 

Requirements for the Semantic Enhancement of the Server 
In Chapter 4, Section 2.1 we identify several use cases for the semantic 

management of software components in application servers: Library De- 
pendencies and Versioning, Licensing, Capability Descriptions, Component 
Classijication and Discovery, Semantics of Parameters, Automatic Generation 
of Web Service Descriptions, Access Rights, Error Handling, Transactional 
Settings, Secure Communication. We combine these requirements into one 
group because they all call for the semantic enhancement of the server. 
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The common requirements are met by most of the existing application 
servers. Semantic Web specific requirements are relevant only for our sce- 
nario. The ones that call for the semantic enhancement of the server itself are 
clearly beyond state-of-the-art and of primary interest. In the following sec- 
tions, we develop an architecture that is a result of the requirements put forward 
in this section. Later, in Chapter 9, we present the details of our implementation, 
called KAON SERVER. 

2.2 The Microkernel Design Pattern 
This section marks the starting point for the design of our ontology-based 

application server. The design is expected to meet all the requirements put 
forward in the previous section. We start with the consideration of the require- 
ment for Extensibility, resulting in the first fundamental design decision: the 
use of the Microkernel design pattern. The pattern applies to software sys- 
tems that must be able to adapt to changing system requirements. It separates 
a minimal functional core, i.e., the Microkernel, from extended functionality 
and application-specific parts. The Microkernel also serves as a socket for 
plugging in these extensions and coordinating their collaboration [Buschmann 
et al., 19961. 

The Microkernel can be seen as a framework providing basic operations, i.e., 
the starting, initializing, monitoring, combining,. and the stopping of software 
components, as well as the dispatching of messages between them. The Micro- 
kernel acts as a basis for our application server. The basic operations mentioned 
above are performed on software components. Software components have to 
conform to the Microkernel's required interfaces in order to be handled by 
the Microkernel. Conformity is accomplished by making existing sofmare de- 
ployable, i.e., wrapping existing software in such a way that it implements the 
Microkernel's required interfaces. In our scenario, ontology-related software 
modules, such as RDF or ontology stores, have to be made deployable. De- 
ployment describes the process of registering a component to the Microkernel 
with possible initialization and start. 

Apart from the cost of making existing software deployable, a drawback of 
this approach is that performance will suffer slightly in comparison to stand 
alone use, as a request has to pass through the Microkernel first (and possibly 
the network). A client that wants to make use of a deployed component's 
functionality talks to the Microkernel, which in turn dispatches requests. 

However, the Microkernel approach delivers several benefits. By making 
existing software deployable, one is able to handle it in a centralized infras- 
tructure. As a result, we are able to deploy and undeploy components ad hoc, 
reconfigure, monitor and possibly distribute them dynamically. Proxy com- 
ponents can be developed for software that cannot be made deployable, e.g., 
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because it has been developed for a specific operating system. Furthermore, 
the Microkernel facilitates the use of interceptors. Interceptors are software 
entities that monitor a request and modify it before the request is sent to the 
component. They are a powerful means for increasing flexibility. 

2.3 Integration of an Inference Engine 
In this section we respond to the group of Requirements for the Semantic 

Enhancement of the Sewer. All of them implicitly call for the application 
of our management ontology, providing the means for semantic descriptions 
of software components. Thus, the second fundamental design decision is to 
integrate an inference engine that stores and reasons with descriptions of all 
deployed components. The Microkernel approach requires the integration of 
an inference engine itself as a component. 

From the Microkernel's perspective, every component looks alike. We have 
to classify the components in order to facilitate development and administra- 
tion. Such a classification has to be captured by the domain version of our 
management ontology when applying it in the resulting server. Chapter 10 dis- 
cusses the application and reuse of the management ontology in more detail. 
We can identify the following types of components: 

System Component Software component providing functionality for the ap- 
plication server itself, e.g., the inference engine. 

Functional Component Software component that constitutes application 
logic. The ontology-related software modules of our scenario become func- 
tional components by making them deployable, e.g., RDF stores. 

External Module An external module cannot be deployed directly as it may 
be programmed in a different language or live on a different computing 
platform. It is equivalent to a functional component from a client perspective 
by having a proxy component deployed that relays communication to the 
external module. 

Proxy Component Proxy components are special types of functional compo- 
nents that manage the communication to an external module. 

Our design leaves open the different ways of using the inference engine (cf. 
Section 1.3). Depending on the specific implementation and depending on the 
use case considered, we may realize: ( i )  the reverse engineering approach by 
obtaining semantic descriptions, (ii)  model-driven deployment by modelling 
semantic descriptions and generating specific deployment descriptors and (iii) 
the ontology run time approach, i.e., disposing descriptors in general. 
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2.4 Architecture 
The first two design decisions, i.e., the Microkernel approach and the inte- 

gration of the inference engine as a component itself, constitute the basis for our 
architecture. In this section, we complete the design of the server by detailing 
its overall architecture. 

For the Semantic Web scenario we envision the following interplay of design 
elements: When a client connects to the application server, it either needs to 
discover the required functional components or to deploy them itself. In the 
first case, the client uses the inference engine to find a deployed functional com- 
ponent fulfilling its prescriptions. The client retrieves a reference as a response. 
From then on, the client can seamlessly work with the functional component 
by surrogates that handle the communication over the network. On the server 
side, the counterpart to the surrogate is a connector component. It maps re- 
quests to the Microkernel's methods. All requests pass the Microkernel, which 
dispatches them to the appropriate functional component. While dispatching, 
a request can be modified by interceptors that may deal with auditing, for in- 
stance. Finally, the response passes the Microkernel again and finds its way to 
the client through the connector and the surrogate. The following paragraphs 
explain the architecture depicted in Figure 8.4. 

Surrogates 

Surrogates (not shown in Figure 8.4) are objects embedded in the client appli- 
cation that relieve the developer of the communication details similar to stubs 
in CORBA (cf. requirement Ease of Use). They offer the same API as a specific 
component and relay communication to any connector, which in turn passes the 
request to the respective functional component through the Microkernel. 

Connectors 

Connectors are system components. They send and receive requests and re- 
sponses over the network. Aside from the option to connect locally, further 
possibilities may exist for remote connection: e.g., ones that offer access via 
Java Remote Method Invocation (RMI) or ones that offer asynchronous commu- 
nication. Connectors also allow publishing components' methods as separate 
Web services. Offering the functionality with peer or agent protocols is also 
possible (cf. requirement Offering Functionality via Different Communication 
Protocols). 

Server Core 

The server core comprises the Microkernel (also called kernel), as well as sev- 
eral system components. It is required to deal with the discovery, allocation 
and loading of components. The inference engine, a system component, man- 
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Figure 8.4. Architecture of the ontology-based application server. 
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ages descriptions of the components and allows the reasoning with them. The 
component loader facilitates the deployment process for a client. It takes a 
semantic description of a component as argument, handles the deployment, in- 
tegrates the description in the inference engine and ontology and applies the 
association management if necessary. The latter is another system component 
that puts ontological constraints among components into action. For example, 
event listeners can be put in charge so that a component A is notified when B 
issues an event. Another example might be a component which may only be 
undeployed if others do not rely on it. 

System components can be deployed and undeployed ad hoc, so extensibility 
is also given for the server core. Further components are possible, e.g., a 
cascading component that offers seamless access to the components deployed 
in another application server. 

Interceptors 
Interceptors are software entities that monitor a request and modify it before 
the request is sent to the component. Interceptors allow the sharing of generic 
functionality, such as security, logging, or concurrency control, and require less 
work than developing individual component implementations. A component 
can be deployed with a stack of arbitrary interceptors. For example, when a 
component is restarted, an interceptor can block and queue incoming requests 
until the component is available again. Another example are security aspects 
which can be met by interceptors that guarantee that operations offered by func- 
tional components in the server are only available to appropriately authenticated 
and authorized clients. 

Functional Components 
Functional components are the ones that constitute the application logic. 
They are of primary interest to the developer whereas system components 
are a means to an end. In our scenario, RDF stores and ontology stores, etc., 
are deployed to the kernel as functional components. Proxy components 
(which are conceptually subsumed by functional components) cannot only be 
developed for external modules, but also for Web services, peers or agents. 
That allows a developer to access them conveniently by surrogates instead of 
handling several other protocols. In addition, interceptors can be applied on 
top, so that, e.g., a Web service might be part of a transaction along operations 
of a deployed ontology store. 

Table 8.1 shows where the requirements put forward in Section 2.1 are re- 
flected in the architecture. Due to the Microkernel design pattern the architec- 
ture basically consists of the Microkernel itself, components, interceptors and 
surrogates. Components are classified into system, functional and proxy com- 
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Table 8.1. Dependencies between requirements (cf. Section 2.1) and design elements. 

Components 

ponents to facilitate their handling and discovery for the application developer. 
Table 8.1 only shows connectors as subconcept of system component, as well 
as the inference engine, the component loader and the association management, 
which are specific system components. Functional and proxy components are 
represented in one column each. 

Most of the Semantic Web specific requirements (Language Support to In- 
ferencing and VeriJication in Table 8.1) are met by functional components. We 
expect that existing software will be made deployable and as such integrated 
to meet the requirements. In addition, Semantic Interoperation can also be 
realized by interceptors which can translate between Semantic Web ontology 
languages. For example, if a client wants to talk in frame logic to an OWL 
ontology store, an interceptor could be registered that automatically translates 
the request. Ontology Modularization, Transactions and Rollbacks, Evolution 
and Versioning, as well as Monitoring, are different in that they all can be im- 
plemented within one functional component. A comprehensive ontology store 
might offer means for transactions, for instance. Interceptors, on the other hand, 
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can realize those mechanisms on top of several components. Akin to what a 
transaction monitor does with several database systems, an interceptor would 
be capable of realizing transactions spanning several ontology stores. 

The remaining requirements (Connectivity to Requirements for Semantic En- 
hancement in Table 8.1) are met as follows: the need for flexible Connectivity 
to the server and the Oflering of Functionality via Different Protocols is real- 
ized by different connector components that can be deployed and undeployed 
ad hoc. Ease of Use particularly affects the surrogate objects, which are ob- 
jects embedded in the client application to hide to different communication 
protocols. We expect that Security will mainly be realized by interceptors. The 
requirement of Extensibility is met by the Microkernel and component approach 
as discussed in Section 2.2. Interceptors also foster extensibility because they 
can be deployed with a component at run time. Proxy components allow the 
Integration of Exiting Functionality and Constraints can be handled by the as- 
sociation management system component. Finally, the Requirements for the 
Semantic Enhancement of the server are met by the inference engine. 

3. Semantic Management of Web Services 
We have discussed in Section 1.1 that application servers typically provide 

Web service support and, therefore, can also be considered for some of the 
Web service use cases. Hence, we have decided to use our ontology-based 
application server also as a platform for the semantic management of Web 
services. Basically, the realization of semantic management of Web services 
boils down to an extension of the server. In this section we discuss what this 
extension looks like. 

In Chapter 4, Section 2.2, we have identified several use cases for the se- 
mantic management of Web services: Analyzing Message Contexts, Selecting 
Service Functionality, Policy Handling, Detecting Loops in Interorganizational 
WorkJows, Incompatible Input and Outputs, Relating Communication Param- 
eters, Monitoring of Changes, Aggregating Service Information and Quality of 
Service. The set of realizable use cases is reduced when choosing an applica- 
tion server as platform: Detecting Loops in Interorganizational WorkJlows, as 
well as Aggregating Service Information, require a Web service composition 
engine. Furthermore, our relatively simple scenario, called "Web services in 
Smartweb" (cf. Chapter 4, Section 1.2, page 62), does not require the Policy 
Handling use case. Regarding the use cases, we can derive the following design 
elements that have to be integrated in our ontology-based application server: 

Metadata Collector Section 1.3 has already indicated that functionality is re- 
quired to obtain the WS* descriptions of used Web services. We call this 
functionality metadata collector and integrate it as a system component into 
our application server. Given the URL of a WS* description, it retrieves 
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the file, parses it, extracts relevant information and integrates the seman- 
tic descriptions. Obtaining the descriptions is already sufficient to realize 
Monitoring of Changes and Incompatible Inputs and Outputs and serves as 
a basis for all the other use cases. 

Web Service Connector The basic requirement for the Analyzing Message 
Context use case is a SOAP engine, i.e., a Web service connector. The meta- 
data collector can also obtain information from in-and-outcoming SOAP 
messages. Browsing and querying the inference engine allows the devel- 
oper to analyze the messages. 

Service Matchmaker Manually browsing service capability descriptions or 
an automatic service matchmaker is required for the use case of Selecting 
Service Functionality. Service matchmakers compare a given service re- 
quirement description to several service offering descriptions and choose the 
best fitting one. Several service matchmaking engines have been prototypi- 
cally implemented in the area of "Semantic Web Services" (cf. related work 
in Chapter 11, Section 4). For example, [Li and Horrocks, 2003, Paolucci 
et al., 2002c,Noiaet al., 20031. Such engines can be integrated as functional 
components. 

Policy Engine For Policy Handling and Relating Communication Parameters 
or the even more sophisticated task of automated policy matching, we need 
a corresponding policy engine. It can be integrated as a component as well, 
acting on a semantic service description in the inference engine and the 
policy of an external service. There are some prototypes available in the 
area of "Semantic Web Services" (cf. related work in Chapter 11, Section 
4). For example, [Tonti et al., 2003,Kagal et al., 2003,Agarwal and Sprick, 
20041. 

Monitoring Interceptor Regarding the use case of Quality of Service, an in- 
terceptor can be put in place. It allows the monitoring of service requests 
and, thus, the gathering of statistics on the reliability and availability of busi- 
ness partners' IT infrastructure. Assuming the system is aware of potential 
endpoints implementing a required service, these endpoints can be pinged 
regularly. If an actual request arrives, aggregated availability information 
can be used to direct subsequent requests to one or the other third party 
service. 

Table 8.2 compares the use cases and the design elements that realize them. 
The metadata collector is necessary for the realization of every use case, empha- 
sizing that semantic management of Web services requires the Reverse Engi- 
neering Approach because of the standardization of WS* descriptions. Model- 
Driven Deployment is possible in principle, but not required by the use cases 
considered. 
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Table 8.2. Dependencies between use cases and design elements. 

Components 

4. Summary 
In this chapter we have answered the Question 111.1: What is a suitable 

target pla@orm? We have opted for an application server, but have come to 
the conclusion that other platforms would benefit from semantic technology as 
well. The next question we have answered in this chapter is 111.2: Who provides 
semantic descriptions? We have seen that there are many potential sources that 
allow the (semi) automatic obtaining of semantic descriptions. Therefore, the 
number of manually provided descriptions can be kept small. We have then 
moved on to design an ontology-based application server that supports the 
semantic management of components and services. The resulting architecture 
is rather generic but provides a number of components to support application 
development in the Semantic Web (as introduced in our scenario in Chapter 4, 
Section 1.1). The following chapter presents a possible implementation of this 
design. 
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IMPLEMENTATION 

In the last chapter we have designed the architecture of an ontology-based 
application server that enables the semantic management of components and 
services. The server provides a number of components to facilitate the de- 
velopment of Semantic Web applications. In this chapter, we implement the 
architecture, thus answering the Question 111.3: How to implement semantic 
management? The recipe for implementation is quite simple: (i) reuse an ex- 
isting application server; i.e., map the design elements of the architecture to 
concrete implementation elements of the application server and (ii) integrate 
the ontology infrastructure (inference engine, ontology store, ontology editor, 
etc.) of an existing ontology tool suite. 

Regarding (i), we choose the open source application server JBoss, which is 
based on the Java Management Extensions (JMX), providing a flexible frame- 
work for plugging components in and out at run time. We briefly introduce 
JBoss in Section 1. Regarding (ii), we leverage the wealth of tools provided by 
the Karlsruhe Ontology and Semantic Web tool suite, KAON [Maedche et al., 
20031. A brief overview of KAON is provided in Section 2. We particularly 
focus on its inference engine, ontology store and ontology editor because we 
apply them in JBoss. The result of this fruitful combination is called KAON 
SERVER which will be discussed in Section 3. We finish in Section 4 by an ex- 
ample which demonstrates the usefulness of the KAON SERVER for building 
Semantic Web applications. An assessment of the benefits of its semantic en- 
hancement, as well as the details regarding the application of the management 
ontology, follow in Chapter 10. 

Most of this chapter has been published in conference proceedings, journals 
and project reports. The KAON SERVER has been outlined and described 
in several publications [Oberle et al., 2005d, Oberle et al., 2004a, Oberle 
et al., 2OO4d, Oberle et al., 2004c,Volz et al., 2003al. An in-depth discussion 



172 SEMANTIC MANAGEMENT OF MIDDLEWARE 

of its technical details is given in Wonderweb deliverables [Oberle et al., 
2003d, Oberle et al., 2003e,Volz et al., 2003b,Volz et al., 2003c, Volz et al., 
2003d,Motik et al., 20021. The KAON SERVER prototype can be downloaded 
athttp://kaon.semanticweb.org/server. 

1. The JBoss Application Server 
JBoss is an open source J2EE compliant application server.' Its core, a 

JMX implementation called JBossMX, will also act as a basis for our KAON 
SERVER. In this section, we briefly discuss JMX, JBossMX and the architecture 
of JBoss. 

JMX (Java Management Extensions) is a specification from Sun defining 
a framework for flexible component-based applications [Lindfors and Fleury, 
20021. JMX defines interfaces of specific software components, called managed 
beans, or MBeans for short.2 MBeans are hosted by an MBeanSewer, which 
allows their manipulation. All operations performed on the MBeans are done 
through interfaces on the MBeanServer as depicted in Figure 9.1. We would 
like to point out two important methods of the MBeanServer, namely: 

registerMBean(Object object, Obj ectName name) 

which, as the name suggests, registers an object as MBean to the MBeanServer; 
the object has to fulfill a certain contract implementing a prescribed interface, 
and 

Object invoke(0bjectName name, String operationName, 
Object Cl params, String Cl signature) 

All method invocations are tunnelled through the MBeanServer to the actual 
MBean by this method. The corresponding MBean is specified by name, 
whereas operat ionName, params and signature provide the rest of the in- 
formation needed. Type checking has to be done by the developer and method 
calls are centralized. Hence, the architecture responds flexibly to changing re- 
quirements and evolving interfaces. Due to this technique, it becomes easy to 
incorporate the mechanism of interceptors. 

An MBean must be a public Java object with at least one public constructor. 
An MBean must have a statically typed Java interface that explicitly declares 
the management attributes and operations. The naming conventions used in 
the MBean interface closely follow the rules set by the JavaBeans component 
model. To expose the management attributes, one has to declare get and 
set methods, similar to JavaBean component properties. The MBeanServer 

'http: //www. jboss  . o r g  
2 ~ o r  an introduction to J2EE. components and frameworks, please cf. Chapter 2, Section 3.1. 
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Figure 9.1. JMX Architecture. [Lindfors and Fleury, 20021 
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and write access in this case. Only management attributes can be accessed 
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management operations. Each MBean is accessible by its identifying name, 
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MBeanServer of JBossMX. J2EE services, such as "JTSIJTA," "Security," etc., come in the 
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JMX is only a specification. It can be implemented differently by vendors. 
There are several implementations available with proprietary extensions. Ac- 
cordingly, JBoss provides its own implementation of JMX, called JBossMX. 

JBossMX is the basis of the JBoss application server whose general architec- 
ture is depicted in Figure 9.2. JBoss is developed modularly from the ground 
up. The application server is completely implemented using MBeans. Typical 
J2EE functionality, such as servlet or EJB containers, are hosted in the form of 
MBeans. 

The modularity benefits the application developer in several ways. The size 
of JBoss, i.e., the amount of required software libraries, can be further trimmed 
down to support applications that must have a small footprint. For example, if 
support for Enterprise JavaBeans is required, the corresponding MBean can be 
deployed at run time. The MBean can be undeployed on demand when it is not 
required by an application. 

2. The KAON Tool Suite 
KAON is an open-source ontology management tool suite targeted at 

semantics-driven business applications. KAON consists of a number of dif- 
ferent tools providing a broad bandwidth of functionalities centered around 
creation, storage, retrieval, maintenance and application of ontologies. [Maed- 
che et al., 2003, Bozsak et al., 2002, Gabel et al., 20041 The tool suite can 
be obtained from http : //kaon. semanticweb. org. An overview of the tool 
suite is depicted in Figure 9.3. 

We have chosen KAON because its API offers rather advanced features, 
such as transactions, remote access and client-side caching, which are required 
for efficient and scalable usage in an application server. For implementing our 
ontology-based application server, we only use the API on RDF implementation 
of the KAON API as inference engine and ontology store, as well as the OI- 
Modeller as management console. However, it is necessary to shortly introduce 
the whole toolsuite for a better understanding. 

KAON Applications. KAON is distributed with two different applications 
for ontology creation and management: KAON Workbench and KAON Portal. 
The KAON Workbench provides a graphical environment in turn consisting of 
three applications: the 01-Modeller, TextToOnto and the Open Registry (a.k.a. 
Ontology Registry). The 01-Modeller is a graphical ontology browser for 
creating, editing and maintaining ontologies. A screenshot of the 01-Modeller 
is depicted in Figure 9.4. TextToOnto supports the ontology engineering process 
by text mining techniques. It provides a collection of independent tools for 
both automatic and semi-automatic ontology extraction. The Ontology Registry 
provides mechanisms for registering and searching ontologies in a distributed 
context. Finally, KAON Portal is a simple tool for multi-lingual, ontology- 
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Figure 9.3. KAON tool suite overview. [Gabel et al., 20041 

based Web portals. All of the applications use the KAON API to access and 
modify ontologies. Other clients can be built accordingly. The KAON API is 
discussed in the next paragraph. 

KAON API. The focal point of the KAON tool suite is its ontology API 
(KAONAPI), consisting of a set of interfaces for access to ontology entities (OI- 
models, concepts, associations and instances). The API is based on the KAON 
language which organizes concepts and associations, as well as instances in OI- 
models. We further discuss the language idiosyncracies in Chapter 10. The API 
supports advanced features, such as client-side caching and remote access, and 
incorporates important elements required for the management of 01-models: 

Changes of 01-models are always performed within a transaction as a single 
unit of work. Therefore, the KAON API uses transactions to isolate updates 
of one user from updates of other users. 

The KAON API supports modularization of ontologies by means of ontol- 
ogy inclusion. Each 01-model may include other 01-models, given that 
they reside in API implementations of the same kind (cf. the discussion 
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Figure 9.4. KAON 01-Modeller screenshot. Concepts are represented by rectangles, instances 
by rounded boxes, associations (also called properties in the figure) by labelled edges. Subcon- 
cept associations are represented by non-labelled edges. Clicking on "Search" allows the user 
to enter an arbitrary query. 

of different KAON API implementations below). Because the inclusion is 
implemented as a link, not as a copy, all changes to the included 01-model 
will immediately affect the including 01-model. 

a Evolution strategies are responsible for making sure that all changes applied 
on the ontology leave the ontology in a consistent state; they are also re- 
sponsible for preventing illegal changes. The evolution strategy also allows 
the user to customize the evolution process. [Stojanovic, 20041 

The KAON API supports concept meta-modelling, which means that it is 
possible to treat concepts and associations as instances of meta-concepts. 
Thus, a concept and an instance with the same URI may exist simultaneously 
in the same 01-model. 

Concepts, associations and instances are considered as language-neutral by 
the KAON API. However, lexica, referring to different entities in the KAON 
representation vocabulary, may be defined. The standard lexical description 
are multilingual labels that may be applied to improve the user's interface. 
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Another kind of lexical entries are morphologically reduced word stems that 
may be used by a natural language processing system. 

The KAON API relies on a Datalog engine to implement lightweight rea- 
soning and querying. Datalog is a database query language that is a syntactic 
subset of Prolog [Abiteboul et al., 19951. The emphasis in the KAON API is 
on conceptual querying, which is different from the traditional query language 
defined by Datalog, where source and results of queries are always relational. 
Hence, the KAON API defines its own query language, called KAON Query, 
that considers the idiosyncracies of conceptual querying. 

KAON API Implementations. The KAON API provides abstract interfaces 
for accessing various types of ontologies independent of the storage mechanism. 
API on RDF and API Proxy are two different implementations of the KAON 
API as discussed below. 

API on RDF The API on RDF implementation represents an in-memory im- 
plementation of the KAON API to access RDF-based data sources via the 
KAON RDF API. Two reference implementations exist for the KAON RDF 
API: On the one hand, KAON offers a simple main-memory implementa- 
tion, including RDF parser and serializer. On the other hand, we have the 
RDF Sewer which implements the KAON RDF API remotely and allows 
for the persistent storage of RDF ontology models in relational databases. 

API Proxy The API Proxy is an implementation of the KAON API that acts 
as a client-side proxy for various types of the KAON Engineering Sewer. 
The Engineering Server provides mechanisms to store KAON ontologies 
in relational databases, to distribute change notifications (thus allowing for 
multi-user ontology engineering) and to bulk-load ontology elements. 

In the subsequent section, we discuss the application of the API on RDF, 
as well as the 01-Modeller, in JBoss. The result of this combination is called 
KAON SERVER, implementing the design proposed in Chapter 8. 

3. KAON SERVER 
Our prototype of an ontology-based application server, called KAON 

SERVER, implements the architecture that is presented in the previous chapter. 
As depicted in Figure 8.4 on page 164, the architecture consists of connec- 
tors, the server core, interceptors and functional components. In principle, the 
KAON SERVER implements the architecture by using JBoss as a basis and by 
applying the tools of KAON for the semantic enhancement of the server. Re- 
garding the semantic management of Web services, the prototype only provides 
the Web service connector and the metadata collector. 
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An in-depth description follows. We start with discussing the server core 
in 3.1 as it is necessary to understand connectors in 3.2, interceptors in 3.3 
and functional components in 3.4. We finish with a look at the management 
console in 3.5. Figure 9.5 acts as a guide throughout the section, summarizing 
the mapping between design and implementation elements. 

Design Elements Implementation Elements 

Sewer Core: Kernel - 
Sewer Core: Inference Engine - 
Sewer Core: Association Management - 
Sewer Core: Component Loader - 
Sewer Core: Metadata Collector - 
Connectors - 
Interceptors - 
Functional Components - 
Functional Components - 

JBossMX: MBeanSewer 

KAON: API on RDF as MBean 

KAON SERVER: Association Management MBean 

KAON SERVER: Component Loader MBean 

KAON SERVER: Metadata Collector MBean 

KAON SERVER: HTTP Adapter, etc. 

KAON SERVER: lnterceptors 

KAON tools as MBeans and external modules 

MBeans from JBoss (EJB Container, JTSIJTA, etc.) 

Figure 9.5. Mapping from the design elements introduced i n  Section 2.4 to the implementation 
elements. 

The KAON SERVER applies the Ontology Run Time approach (cf. Section 
1.3) where components, such as the association management or the component 
loader, work directly with the inference engine. 

3.1 Server Core 
The server core consists of the kernel and the following system components: 

the inference engine, the association management, the component loader and 
the metadata collector. We outline all of their implementations below. 

Kernel 
In the case of the KAON SERVER, we use the JBoss implementation of JMX, 

called JBossMX, as it provides a Microkernel approach, i.e., a flexible frame- 
work for deploying and undeploying components at run time. In our setting, 
the MBeanServer implements the kernel and MBeans implement components. 
Speaking in terms of JMX, there is no difference between a system component 
and a functional component. Both are MBeans that are only distinguished in 
their corresponding semantic descriptions. 
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Inference Engine 

The inference engine is a simple main-memory based ontology store with 
reasoning capabilities containing component and service descriptions. This in- 
formation source is built around our management ontology, which specifies the 
functional aspects of a component, e.g., the libraries required by a component, 
its name, the class that implements the component itself and so forth. Chapter 
10 discusses the adaptation of the management ontology to this specific use. 

We wrap the main-memory implementation of the KAON API (API on RDF) 
as a MBean and use it with an applied version of the management ontology. 
When a component is deployed, its description (usually stored in an XML file) is 
represented as an instance of a concept. A client can use the inference engine's 
surrogate to discover the component it needs or to execute arbitrary KAON 
queries. 

Association Management 

The management ontology allows one to express associations between com- 
ponents, such as inter-component dependencies. Therefore, the server has to 
load all required components and has to be aware of such dependencies when 
unloading components. Association management tracks the number of clients 
for a component and will only unload the component if no clients are present. 

The JMX specification does not define any type of association management 
aspect for MBeans. That is the reason why we had to implement this func- 
tionality separately as another MBean. Apart from dependencies, it is able to 
register and manage event listeners between two MBeans A and B, so that B is 
notified whenever A issues an event. 

Component Loader 

The MBeanServer offers methods to deploy any MBean at run time; however, 
the client application of an MBeanServer must explicitly create the MBeans it 
needs. It must maintain the list of required libraries, and it must integrate the 
semantic descriptions of newly created MBeans into the inference engine and 
ontology by itself. 

To lift these responsibilities from the individual client, we have developed 
a special component loader MBean that facilitates the deployment process. 
MBeans are described by KAON XML serializations according to the man- 
agement ontology. The component loader uses this description to deploy the 
MBean, to integrate the MBean component description in the inference engine 
and ontology and to put associations into action by applying the association 
management. For example, it deals with the transitive loading of required com- 
ponents. The component loader is able to deploy an MBean from arbitrary 
URL's; hence, users of the server are not required to install any libraries on the 
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server machine before instantiating a component. The component loader also 
ensures that shared libraries that are part of the component implementation are 
only loaded once if multiple components share the same library. 

Metadata Collector 
Besides the Web service connector, the prototypical KAON SERVER im- 

plementation provides a metadata collector responding to the required design 
elements for semantic management of Web services (cf. Section 3). After pro- 
viding the URI's of WSDL, WS-BPEL or WS-Policy documents, the metadata 
collector retrieves the documents and adds them as semantic descriptions to the 
inference engine. This basically requires a mapping from the documents' tags 
to concepts and associations of our management ontology. We have already 
given an example for a resulting service profile of WS-BPEL and WS-Policy 
documents in Chapter 7, Section 4.3. 

In the following, we exemplarily sketch how such a mapping can be achieved 
in order to provide the general idea. For a detailed description of the mapping 
algorithm please cf. [Oberle et al., 2003dl. Table 9.1 shows the basic mapping 
for a selection of WSDL tags and the ontology. Note that the table only sketches 
the mapping which basically requires a traversal of the document that must also 
consider attributes of the tags. 

Table 9.1. A selection of WSDL tags and their mapping to concepts and associations of 
management ontology. 

our 

In a similar way, Table 9.2 sketches how a mapping from WS-BPEL docu- 
ments to the management ontology can be achieved. Note that we only consider 
the workflow information and neglect variables, assignments and correlation. 
Basically, the WS-BPEL process results in an 0oP:Plan with correspond- 
ing tasks. The 0oP:Plan becomes part of a C0WS:ServiceProfile. The 
0oP:successor association is obtained by considering the nesting of the tags 
or by explicit BPEL partnerLinks (Web service invocations). 

The mapping from WS-Policy to the management ontology is sketched 
in Table 9.3. CS0:PolicyDescriptions of the management ontology model 

WSDL Tags 
<service> 
<operation> 
<input> 
<output> 
<fault> 
<complexType> 
<simpleType> 

Part of Management Ontology 
C0WS:ServiceProfile 
CS0:Method 
CS0:lnput 
CSO:Output 
CS0:Exception 
CS0:dataType 
CS0:dataType 
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Table 9.2. A selection of WS-BPEL tags and their mapping to concepts and associations of 
our management ontology. 

WS-BPEL Tags I Part of Management Ontology 
<~rocess> I 0oP:Plan 

WS-Policy assertions. Every C0WS:ServiceProfile can contain several 
CS0:PolicyDescriptions to reflect alternatives (the <ExactlyOne> tag). 
Conjunctions of assertions are represented by nested CS0:PolicyDescriptions 
(the A l l  tag) . 

Table 9.3. A selection of WS-Policy tags and their mapping to concepts and associations of 
our management ontology. 

3.2 Connectors 
The KAON SERVER comes with four MBeans that handle communication. 

First, there is the HTTP Adapter from Sun, which exposes all of the kernel's 
methods to a Web frontend. It acts as a JMX console for the administrator. Sec- 
ond and third, we have developed Web service (using the Simple Object Access 
Protocol) and RMI (Java Remote Method Invocation) connector MBeans. Both 
export the kernel's methods for remote access. Finally, the Local connector em- 
beds the KAON SERVER locally into the client application. 

For the client there is a surrogate object called RemoteMBeanServer that 
implements the MBeanServer interface. It is the counterpart to one of the 
four connector MBeans mentioned above. Similar to stubs in CORBA, the 
application uses this object to interact with the MBeanServer and is relieved of 
all communication details. The developer can choose which of the four options 
(HTTP, RMI, Web Service, Local) shall be used by RemoteMBeanServer. 

To facilitate all of the above for the client, we have built a Connector- 
Factory, the methods of which return surrogate objects for the inference en- 
gine, association management, metadata collector and component loader. In 
addition, we have developed surrogate objects for functional components. As 

WS-Policy Tags 
Assertions 
<ExactlyOne> 
<All> 

Part of Management Ontology 
One CS0:PolicyDescription per assertion 
One of the CS0:PolicyDescription in a C0WS:ServiceProfile 
All of the CSO:PolicvDescri~tion in a CS0:PolicvDescri~tion 
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an example, there exists a RemoteRDFServer surrogate, relaying communi- 
cation to one of the KAON tools (cf. Section 2). Every surrogate has to be 
provided with the MBean's identifier, which can be discovered in the inference 
engine. 

3.3 Interceptors 
As explained in Chapter 8, Section 2.4, interceptors are software entities that 

monitor a request and modify it before the request is sent to the component 
[Buschmann et al., 19961. 

In the kernel, each MBean can be registered with an invoker and a stack of 
interceptors. A request received from the client is then delegated to the invoker 
first before it is relayed to the MBean. The invoker object is responsible for 
managing the interceptors and sending the requests down the chain of intercep- 
tors towards the MBean. For example, a logging interceptor can be activated 
to implement the auditing of operation requests. An authorization interceptor 
can be used to check that the requesting client has sufficient access rights for 
the MBean. 

Invokers and interceptors are useful to achieve other goals apart from security. 
For example, when a component is being restarted, an invoker could block and 
queue incoming requests until the component is available again or the received 
requests time out. Alternatively, it could redirect the incoming requests to 
another MBean which is able to fulfill them. Interceptors may also be used to 
meet the requirement of Semantic Interoperation. Client requests in a specific 
Semantic Web language can be translated so that they can be understood by a 
component that might speak another language. 

3.4 Functional Components 
KAON Tools There are different implementations that have been made de- 
ployable. Among them main-memory based and persistent RDF stores, as well 
as main-memory based and persistent KAON ontology stores. 

External Modules We have developed several proxy components in order 
to adapt external modules: Sesame [Volz et al., 2003d1, Ontobroker [Volz 
et al., 2003b1, as well as a proxy component for DL reasoners that conform 
to the DIG interface3, such as FaCT [Horrocks, 19981 or Racer [Haarslev and 
Moeller, 200 11. 

MBeans from JBoss As already mentioned in Section 1, JBoss is based on 
a modular design. The application server is completely implemented using 

3~escription Logic Implementation Group, h t tp :  //dl. kr . org/dig/ 
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MBeans. Typical J2EE functionality, such as the EJB container or JavaServer 
Pages, is hosted in the form of MBeans and can be leveraged in the KAON 
SERVER. 

3.5 Management Console 
We use the KAON 01-Modeller as a simple management console. It allows 

the user to browse and edit its contents. The administrator is able to enter 
KAON Queries to query the inference engine for any concept in the ontology in 
a separate text box. Using the KAON 01-Modeller as a management console is 
depicted in Figure 9.6. For starting, stopping and monitoring of components, a 
common JMX frontend can be used. In our case, we apply the HTTP Adapter 
from Sun (cf. Section 3.2). 

+ -- - -~+ 

Developer or Inference engine 
Administrator in application server 

KAON OlModeller 

Figure 9.6. The KAON OIModeller ontology editor allows the developer and administrator to 
browse and query the KAON SERVER'S inference engine. 

4. Example 
This section shows the usefulness of the KAON SERVER with respect to 

its ability to facilitate the development of Semantic Web applications. An 
assessment of the benefits of its semantic enhancement follows in Chapter 10. 
The example shows the reader how the different parts of the KAON SERVER, 
which so far have only been described in isolation from each other, interact 
with each other. The first part of the example can be actively followed by 
downloading the OilEd demonstrator at http : //kaon . semant icweb . org/ 
server. 

We now refer to the scenario depicted in Figure 4.4 on page 61, which 
involved concise modelling of the research and academia domain in description 
logics. The ontology thus created can be used in several research and academia 
applications. In our scenario, we want to set up a comprehensive portal, which 
exploits a rule-based system capable of handling large amounts of instances 
and the deduction of additional information by rules. 
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In the following sections, we want to show how the scenario can be realized 
with the KAON SERVER using existing clients and several components. The 
application version of the domain ontology should be as expressive as possible, 
formalized in an executable and standardized language in order to facilitate its 
reuse across applications. Hence, the preferred choice is OWL DL (cf. Chapter 
4, Section 1.1). The OilEd ontology editor [Bechhofer et al., 20011 may be 
used for the construction of such ontologies. OilEd uses the FaCT reasoner 
[Horrocks, 19981 for consistency checking of ontologies. 

For the portal application, OntoEdit [Sure et al., 20021 and its corresponding 
ontology store Ontobroker [Decker et al., 19981 are well-suited because they 
are based on frame logics [Kifer et al., 19951 that allow the definition of, 
and reasoning with, rules, as well as the efficient handling of large amounts of 
instances. 

We assume that an instance of the KAON SERVER is up and running, de- 
ployed with: (i) RMI and Web service'connectors, (ii) component loader, in- 
ference engine and association management system components, (iii) semantic 
interoperation and ontology repository functional components and (iv) proxy 
components for Ontobroker and FaCT [Horrocks, 19981 (cf. Figure 9.7). The 
RDF Server will later be deployed by one of the editors. 

OilEd's and OntoEdit's interactions with the server are discussed in the fol- 
lowing UML-like sequence diagrams [Booch et al., 19981. Note that these 
diagrams do not show the exact Java method calls for the sake of brevity. For 
the same reason, we omit all the details involving connectors. 

4.1 Modelling the Ontology 
For ontology engineering we use OilEd, an editor that supports the OWL 

DL language among others. It connects to the KAON SERVER through Java 
Remote Method Invocation (RMI). As depicted in Figure 9.8, OilEd uses the 
ConnectorFactory to retrieve surrogate objects for the MBeanServer itself, 
the component loader and the inference engine in the acquisition phase (I). 

In step (2), a successful discovery of the ontology repository functional 
component  follow^.^ A reference to the repository MBean is returned to OilEd, 
which in turn loads the DOLCE top-level ontology from the ontology repository 
as the starting point for modelling the domain ontology. The corresponding 
method invocation, invoke (MBean-ref , load, DOLCE) , is directly routed 
through the MBeanServer without using a surrogate object. This is achieved 
by the invoke() method (cf. Section l), which takes an MBean reference, 

4~nteractions from surrogate objects (i.e., Remotex, where x is the name of a component) to the KAON 
SERVER are not shown in the diagrams. Each surrogate has to be created on the client's side and relay its 
method calls over the network to aconnector's invoke 0 method, which eventually calls the MBeanServer's 
invoke 0. 
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Figure 9.7. An instance of KAON SERVER where OilEd, OntoEdit and the portal application 
act as clients. 

the name of the operation and its parameters as arguments. After that, the 
editor looks up the MBean reference for the semantic interoperation functional 
component. OilEd uses it to transform the DOLCE ontology into the OWL 
DL language. This method invocation is also routed through the MBeanServer 
without any surrogate objects. 

At this point, the user is able to start editing the research and academia 
ontology (3). When finished, a verification on the ontology is usually done by 
applying the FaCT reasoner [Horrocks, 19981. OilEd tries to discover such a 
reasoner. In our scenario, we assume that there is a proxy component deployed, 
and, thus a reference is returned. The editor creates a RemoteFaCT object, 
which hides the communication details. In our case, since the ontology is 
consistent, the user proceeds with saving. 
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Figure 9.8. Sequence diagram - OilEd with KAON SERVER. 

For storing the ontology, an instance of KAON's RDF Server along an au- 
thentication interceptor is created by using the component loader (4). OilEd 
is relieved from starting and initializing. It retrieves a reference to the newly 
created MBean from the component loader. Only then it is able to create an 
instance of RemoteRDFServer, which, like all other surrogates, hides the com- 
munication details and handles possible interceptors. For the latter, Remote- 
RDFServer has to be first provided with the credentials. After serializing the 
ontology into RDF, it is finally saved by the persistent RDF Server. 

4.2 Definition of Rules 
In our portal, we want to be able to handle large amounts of instances. 

Furthermore, we want to apply complex rules for deducing additional facts, 
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e.g., ifa Person A works in Project X and X's topic is Z then Person A is familiar 
with the topic Z. OntoEdit and its corresponding ontology store Ontobroker are 
well-suited for such purposes because they are based on frame logics. Frame 
logics allow the definition of rules and the efficient handling of large amounts 
of instances. We assume that the semantic interoperation functional component 
allows the translation of the concept hierarchy and the associations from OWL 
DL to frame logics. Note that we do neglect the details of translating between 
different logics for the sake of a simple scenario. The translation allows using 
OntoEdit, which provides a graphical user interface for editing ontologies and 
rules. 

Figure 9.9 depicts the sequence diagram for OntoEdit's communication with 
the server. RemoteMBeanServer and RemoteInf erenceEngine objects are 
created in phase (I), similar to OilEd's interactions. We assume that the user 
is aware of the RDF Server and the ontology just created. Helshe can provide 
enough information to perform a successful discovery for the store, as well as 
the required credentials (2). An instance of RemoteRDFServer is responsible 
for communication and handling the authentication interceptor on the server's 
side. The invocation of getontology ( . . . ) on RemoteRDFServer yields an 
RDF-stream that is to be transformed into frame logic, i.e., OntoEdit's ontology 
language, by the semantic interoperation functional component. OntoEdit dis- 
covers the latter and calls the respective method directly, without creating any 
special surrogate object, through RemoteMBeanServer. The user is now able 
to add rules and instances and to perform adaptations on the ontology, as only 
the concept hierarchy and associations have been translated from the OWL DL 
ontology (3). 

OntoEdit uses Ontobroker for ontology storage and reasoning, as well as 
semantic validation of the ontology (analogous to OilEd and FaCT). Ontobroker 
exploits a relational database system for persistence. We have already assumed 
that a proxy component for Ontobroker is deployed to the KAON SERVER. 
Instead of loading a new one, OntoEdit tries to discover such a component and 
retrieves a reference to the respective MBean (4). Before loading the frame 
logic ontology into Ontobroker, the editor ensures that the proxy component is 
not unloaded by other clients or unloaded for server performance reasons. It, 
therefore, retrieves a reference to the association management via the inference 
engine and invokes a corresponding method. Frame logic ontology, instances 
and rules can now be loaded into Ontobroker. 

4.3 Setting up the Portal 
After translation into frame logic, possible adaptations and addition of rules 

with OntoEdit, the portal application just needs to reuse the deployed Ontobro- 
ker residing within the KAON SERVER. It already holds the required ontology 
together with the rules. The application has to connect to the KAON SERVER, 
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edit 
rules 
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Figure 9.9. Sequence diagram - OntoEdit with KAON SERVER. 

in this scenario by a Web service connector, discover Ontobroker and start dis- 
playing and changing the ontology's instances by a Web front-end. Without the 
KAON SERVER, all of the above would lead to a one-off effort of combining 
software modules without the possibility for much reuse and extensibility. 

5. Summary 
In this chapter we have responded to the Question 111.3: How to implement 

semantic management? We have reused the open source application server 
JBoss and have leveraged the wealth of tools provided by the Karlsruhe On- 
tology and Semantic Web tool suite, KAON [Maedche et al., 20031. KAON's 
inference engine, ontology store and ontology editor have been applied to se- 
mantically enhance JBoss. The result of this fruitful combination is called 



Implementation 189 

KAON SERVER, whose usefulness for building Semantic Web applications has 
been demonstrated by an example. The example has shown that without the 
KAON SERVER, application development for the Semantic Web leads to a 
one-off effort of combining software modules without the possibility for much 
reuse and extensibility. An assessment of the benefits of semantic management, 
as well as details regarding the application of the management ontology, follow 
in Chapter 10. 
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APPLYING THE MANAGEMENT ONTOLOGY 

In the last chapter we have been concerned with implementing the design of 
an ontology-based application server. We have reused the existing application 
server JBoss and applied the tools of KAON for the semantic enhancement 
of the server. However, we have not detailed the steps necessary to reuse our 
management ontology in the resulting KAON SERVER. 

In this chapter, we fill the gap by responding to the Question 111.4: How 
to reuse the ontology? We have designed the management ontology in such a 
way as to be platform-independent and as specific as possible at the same time. 
For reuse in the KAON SERVER, one needs to take the following three steps 
(cf. Figure 10.1): (i) we have to specialize the core concepts and associations 
to reflect the idiosyncracies of the platform. For example, we have to intro- 
duce MBeans as a special kind of C0SC:SoftwareComponent. The result 
of this step is a domain, reference and heavyweight version of our management 
ontology. Step (ii) removes concepts and associations that have been intro- 
duced merely for reference purposes. An example are ComputationalObjects 
and ComputationalActivities because both were introduced for a better ex- 
planation of other terms, such as Software or Data. The result is a domain, 
application and heavyweight version. Finally, step (iii) requires the adaptation 
of the axiomatization to the KAON language, which is less expressive than the 
management ontology's language (i.e., modal logic S5). The resulting ontol- 
ogy, viz., a domain, application and lightweight version of the management 
ontology, is actually applied in the KAON SERVER and can be obtained from 
http://cos.ontoware.org. 

Sections 1 to 3 discuss the three steps in detail. Finally, Section 4 assesses 
the benefits of semantic management by comparing efforts with and without 
semantic technology on a per-use-case basis. 
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Figure 10.1. Reuse of the management ontology in the KAON SERVER requires ( i )  special- 
ization of the core entities to reflect domain knowledge, (ii)  shifting from reference to application 
purpose and (iii) reduction from heavyweight to lightweight axiomatization. 

1. From Core to Domain 
The first step in reusing our management ontology is to specialize and extend 

its concepts and associations so that they reflect the idiosyncracies of the KAON 
SERVER. That means moving from core to domain on the specificity axis of 
our classification (cf. Figure 10.1). The result of this step is a domain, reference 
and heavyweight version of our management ontology. That means, we keep 
the representation formalism of the management ontology, i.e., modal logic S5, 
in this step. The resulting taxonomy is depicted in the Appendix on page 253. 

This step requires an analysis of the typical concepts prevailing in the KAON 
SERVER. As KAON SERVER is based on J2EE, and, more specifically, on 
JMX, we find terms such as "MBean" or "JAR (Java ARchive). Furthermore, 
Chapter 7, Section 2.3, page 162, introduced a classification taxonomy of "func- 
tional components," "proxy components," and "system components." Such 
concepts must be aligned to the concepts of the management ontology. That 
means choosing an appropriate superconcept and axiomatizing their meaning 
by applying concepts and associations of the management ontology. Hence, the 
following sections introduce MBeans as a special kind of C0SC:Software- 
Component and additional kinds of profiles to capture the classification tax- 
onomy. Component providers can further extend the ontology by introducing 
customized profiles to categorize specific components. 
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1.1 MBeans 
The KAON SERVER is based on JBoss, which in turn relies on JMX (the 

Java Management Extensions). JMX is a specification from Sun defining a 
framework for flexible component-based applications. JMX defines interfaces 
of specific software components, called managed beans or MBeans. The goal 
of this section is to formalize MBeans as a specialization of C0SC:Software- 
Component. For this reason, we analyze the contents of MBean deployment 
descriptors, called MLETs [Lindfors and Fleury, 20021. MLETs define MBeans 
by the following attributes: 

code This attribute specifies the full Java class name, including the package 
name, of the MBean described. 

ob j  e c t  This attribute specifies the . s e r  file that contains a serialized repre- 
sentation of the MBean described. Either code or object  must be present. 

archive This mandatory attribute specifies one or more . j a r  files containing 
MBeans or other resources used by the MBean described. 

codebase This optional attribute specifies the codebase URL of the MBean to 
be obtained. It identifies the directory that contains the . j a r  files specified 
by the archive attribute. 

name This optional attribute specifies the object name to be assigned to the 
MBean instance when it is registered to the MBeanServer. 

version This optional attribute specifies the version number of the MBean 
and associated . j a r  files to be obtained. The version number can be used 
to update . j a r  files that are loaded by the MBeanServer. 

a r g l i s t  This optional attribute specifies a list of one or more parameters for 
the MBean to be instantiated. This list describes the parameters to be passed 
to the MBean's constructor. 

The definitions and axioms below capture such an MBean description by 
means of our management ontology.' We use the nomenclature above as names 
of the corresponding associations although it is mnemonically misleading. Note 
that we omit the definitions of associations with simple XML-Schema datatypes, 
such as xsd: s t r i n g  or xsd: integer ,  as range. These are code, object, 
codebase,  name and version. 

'Note that the symbol @ represents the logical xor (exclusive or) connective. 
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(D39) MBean(x) =d,, COSC:SoftwareComponent(x) A 3y(code(x, y) @ 
object(x, y)) A 3a, cb, n, v, al(archive(x, a) A codebase(x, cb) A 
name(%, n) A version(x, v) A arglist(x, al)) 

(A31) MBean(x) -+ 

COSC:conforms(x, JMX) A COSC:FrameworkSpecification(JMX) 

(D40) JARCollection(x) =,,, 
DOLCE:Collection(x) A 'dy(DOLCE:member(x, y) 4 JAR(y)) 

(D41) JAR(x) =,,, COSC:SoftwareLibrary(x) A 
Vc((DOLCE:properPart(x, c) A CSO:Class(c)) -+ 

(OIO:orderedBy(c, Java) A 
OIO:lnformationEncodingSystem(Java))) 

(D42) Argument(x) =d,f CSO:Data(x) A 3, v(type(x, t) v value(x, v)) 

(A32) archive(x, y) + MBean(x) A JARCollection(y) 
(A33) arglist(x, y) -t MBean(x) A Argument(y) 
(A34) nextArgument(x, y) -+ Argument(x) A Argument(y) 
( A 3 3  type(x, y) -+ Argument(%) A (y = java.lang.Boolean V y = 

java.lang.Byte V y = java.lang.Short V y = java.lang.Long V y = 
java.lang. Integer V y = java.lang. Float V y = java.lang. Double V y = 
java. 1ang.String) 

(D39) and (A31) characterize an MBean as a C0SC:SoftwareComponent 
conforming to the JMX framework specification with all the attributes intro- 
duced above. While code, object, codebase, name and version are simple 
attributes, archive and arglist require more attention. As defined in (A32), the 
range of archive points to a JARCollection, viz., a DOLCE:Collection, con- 
sisting of JARs (Java ARchives). JARs are C0SC:SoftwareLibraries whose 
CS0:Classes are represented in the Java language (cf. (D40 and (D41)). The 
range of arglist points to an Argument (cf. (A33)), which is simply defined 
as a special kind of CS0:Data with type and value attributes. ( A 3 3  defines 
type by enumeration. We omit the definition of value because it is a simple 
attribute. In order to preserve the ordering of Arguments, each Argument 
may point to its successor via nextArgument as defined in (D42) and (A34). 

1.2 Profiles 
Section 2.3 in Chapter 8 on page 162 introduced a particular classification 

of components in our ontology-based application server. MBeans can act as 
functional, system or proxy components. This section is concerned with for- 
malizing this classification. The definitions and axioms below capture the terms 
as special kinds of C0SC:ComponentProfile. 

Functional components are MBeans deployed in the ontology-based appli- 
cation server that constitute the application logic. In the scenario of application 
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development for the Semantic Web, ontology-related software modules, e.g., 
RDF stores, become functional components by making them deployable (that 
means wrapping them as MBeans). An arbitrary stack of interceptors can be de- 
ployed with each functional component, and the developer can define individual 
dependencies between them. Accordingly, we define FunctionalComponent- 
Profiles and the associations to interceptors and to other profiles in (D43), 
(A36) and (A37) below. 

System components are software components providing functionality for the 
server itself. In the KAON SERVER, we have a fixed number of system compo- 
nents, namely ones for the inference engine, the association management, the 
metadata collector, the component loader, as well as several connector compo- 
nents. Consequently, we define Systemcomponent Profiles by enumeration 
in (D44) below. 

Finally, proxy components are special types of functional components that 
manage the communication to an external module. External modules cannot 
be deployed directly as they may be programmed in a different language, live 
on a different computing platform, etc. Thus, ProxyCom ponent Prof iles are 
characterized as Functi~nalC~mp~nentProfiles whose C0SC:described 
MBeans have a dependence on some kind of software (cf. (D45) below). 

As discussed in Chapter 8, Section 2.4, interceptors are software entities that 
monitor component requests and modify them. According to this definition, 
(D46) introduces the concept of an Interceptor as specialization of a CS0:- 
Class that CS0:invokes an MBean. It is possible to define a whole sequence 
of interceptors that act on a component. In order to capture the sequence, 
(A37), (A38), and (A39) introduce the unique firstlnterceptor association on 
the profiles, as well as the transitive nextlnterceptor. 
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2. From Reference to Application 
The second step requires moving from reference to application on the pur- 

pose axis of our classification (cf. Figure 10.1 on page 192). That means remov- 
ing concepts and associations that have been introduced merely for reference 
purposes. The result is a domain, application and heavyweight version of the 
management ontology. In this section we basically revisit all definitions and 
axioms and single out ones that are introduced for reference purposes (cf. Tables 
10.1 and 10.2). On the one hand, the main reason for removing a definition is 
as follows: 

Explanation Concepts and associations might be introduced merely to catch 
the intended meanings of other concepts more precisely, i.e., they are 
required for a better explanation of other concepts but not for reason- 
ing purposes. Examples are CSO:ComputationalObjects and CS0:-  
ComputationalActivities. They are introduced to capture the notion of 
Data and Software more precisely. CSO:Computationa10bjects are a 
special kind of 0IO:lnformationRealization and captures specific con- 
tents in main memory. CS0:ComputationalActivities are the D0LCE:- 
Perdurants that represent actual CPU operations. Both concepts neither 
have subconcepts, nor do we expect to model such information in an appli- 
cation ontology. 

On the other hand, we can identify different reasons for keeping specific 
definitions and axioms. Note that there might be more than one reason for a 
definition at the same time. The tables below only list the primary reason in 
each case. 

Taxonomy We expect that only specializations of core concepts, such as 
COSC:SoftwareComponent, will be instantiated in a concrete applica- 
tion. For example, the domain version introduced MBean as specific kind 
of C0SC:SoftwareComponent. Hence, there will only be instances of 
MBean in the application ontology. However, we keep core concepts, such 
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as COSC:SoftwareComponent, in the application version of our ontology 
in order to have a meaningful taxonomy. 

Application Finally, we can find definitions or axioms, which are required 
for the application version because they are introduced to enable run time 
reasoning. Most definitions but also axioms for transitivity or symmetry 
of associations make up this category. As an example, consider (A39) 
on page 196, which defines the nextlnterceptor association as transitive. 
Furthermore, domain and range restrictions on associations belong in this 
category. We opt to keep such axioms also in the application ontology. For 
example, Definition (D9) on page 119 specifies the domain and range of 
CS0:identifies as CS0:AbstractData and D0LCE:Particular. 

The executable target language constrains how much of the axiomatization 
can be captured. Consider the definition of Software (cf. (D5) on page 117) 
as an example. If we choose KAON as target language, we can only keep 
the information that CS0:Software is a specialization of 0IO:lnformation- 
Object. If we choose a typical description logic, we are able to capture the 
whole expression. We elaborate on this issue in the next section which deals 
with step (iii), i.e., moving from heavyweight to lightweight axiomatization. 

Table 10.1: Definitions kept or removed from the management ontology. 

Description 
CS0:ComputationalObject 

Keep - 
No 
No 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Reason 
Explanation 
Explanation 
Explanation 
Explanation 
Taxonomy 
Application 
Taxonomy 
Taxonomy 
Application 
Application 
Application 
Application 
Explanation 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 

Page - 
116 
116 
116 
117 
117 
117 
118 
119 
119 
120 
120 
120 
120 
121 
123 
123 
123 
123 
1 24 
124 
125 
125 
125 
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CS0:PolicyObject 
CS0:TaskCollection 
CS0:Constraint 
CS0:PolicyDescription 
C0SC:FrameworkSpecification 
C0SC:conforms 
C0SC:SoftwareComponent 
C0SC:SoftwareLibrary 
C0SC:License 
C0SC:Profile 
C0SC:ComponentProfile 
C0SC:Characteristic 
C0WS:WebService 
C0WS:ServiceProfiIe 
C0WS:QualityOfService 
MBean 
JARCollection 
JAR 
Argument 
FunctionalComponentProfile 
SystemComponentProfile 
ProxyComponentProfile 
Interceptor 

Yes 
Yes 
Yes 
Yes 
No 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Application 
Application 
Application 
Application 
Explanation 
Explanation 
Taxonomy 
Taxonomy 
Taxonomy 
Taxonomy 
Taxonomy 
Taxonomy 
Application 
Application 
Taxonomy 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 

Table 10.1 shows the definitions which are kept or removed from the man- 
agement ontology. We have already explained the removal of Computational- 
Objects and ComputationalActivities above. D0LCE:presentAt is used 
in the definition of DOLCE:specificallyConstantlyDependsOn. The 
DOLCE:specificallyConstantlyDependsOn and D0LCE:properPart asso- 
ciation are only used for a more precise explanation of other concepts. Finally, 
C0SC:FrameworkSpecification and C0SC:conforms are there to specify 

Table 10.2: Axioms kept or removed from the management ontology. 

Description 
CS0:methodRequires 
CS0:methodYields 
CS0:methodThrows 
CS0:dataType 
CS0:interfaceRequires 
CS0:implements 
Transitivity of CS0:invokes 
Axiom for CS0:executes 
Axiom for CS0:invokes 
CS0:inputFor 
CS0:outputFor 
Axioms for CSO:lnput, CS0:Output 

Keep - 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
No 

Reason 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Explanation 

Page 
120 
120 
120 
120 
122 
122 
123 
123 
123 
124 
124 
124 
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Axioms for CSO:lnput, CS0:Output 
CSO:comp.RightTowards 
Axiom for CSO:comp.RightTowards 
Axiom for group memberships 
C0SC:libraryDependsOn 
Transitivity of C0SC:libraryDependsOn 
C0SC:libraryConflictsWith 
Symmetry of C0SC:libraryConflictsWith 
Axiom for C0SC:libraryConflictsWith 
C0SC:releasedUnder 
C0SC:licenselncompatibleWith 
Symmetry of C0SC:licenselncompatibleWith 
C0SC:describes 
C0SC:profiles 
C0SC:directlyAccessibleResource 
C0SC:indirectlyAccessibleResource 
Axiom for C0WS:WebService 
C0WS:invokesWebServiceWithPolicy 
Axiom for MBean 
archive 
arglist 
nextArgument 
type 
profileDepends 
firstlnterceptor 
nextlnterceptor 
Transitivity of nextlnterceptor 

No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Explanation 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Explanation 
Application 
Explanation 
Application 
Application 
Application 
Application 
Application 
Application 
Application 
Application 

Table 10.2 shows the axioms which are kept or removed from the manage- 
ment ontology. (A 12) and (A13) are removed because they are only introduced 
to capture the difference between CS0:lnputs and CS0:Outputs. In a sim- 
ilar vein, (A29) and (A31) help to explain C0WS:WebService and MBean, 
respectively. Hence, they are not required for reasoning purposes. 

3. From Heavyweight to Lightweight 
After removing definitions and axioms for reference purposes in step (ii), the 

remaining ones have to be adapted manually to an executable language. That 
means moving from heavyweight to lightweight on the expressiveness axis 
(cf. Figure 10.1 on page 192) because executable languages are typically less 
expressive than the management ontology's language (i.e., modal logic S5). 
As discussed in Chapter 9, Section 2, page 174, we have chosen the KAON 
toolsuite and, thus, we are bound to the KAON language. 

We already mentioned in the previous section, that the choice of the exe- 
cutable language constrains how much of the axiomatization can be captured. 
In essence, each definition and axiom has to be adapted manually to fit the target 
language. We considered the definition of Software. If we choose a typical de- 
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scription logic, such as OWL DL, we are able to capture the whole expression. 
If we choose KAON as target language, we can only keep the information that 
CS0:Software is a specialization of 0IO:lnformationObject. In general, 
KAON only allows expressing concept and association hierarchies, domain, 
range and cardinality restrictions on associations, and inverse, symmetry, as 
well as transitivity axioms. The resulting ontology, viz., a domain, application 
and lightweight version of the management ontology, is actually applied in the 
KAON SERVER and can be obtained from http : //cos . ontoware. org. 

3.1 The KAON Language 
As discussed in Chapter 9, Section 2, page 174, we have chosen the KAON 

toolsuite as the semantic technology in the KAON SERVER because the KAON 
API offers a comprehensive set of features in order to control the application 
server with an ontology. Therefore, we are bound to the KAON language, which 
is a proprietary extension of RDFS (cf. Chapter 4, Section I .  I). It follows the 
object-oriented modelling paradigm as closely as possible and extends it with 
simple deductive features by keeping in mind some practical aspects. KAON 
is primarily based on deductive database techniques, such as magic sets [Beeri 
and Ramakrishnan, 19871, which have proven to be indispensable for achiev- 
ing inferencing tractability and practicability. The language allows modelling 
concept and association hierarchies, domain, range and cardinality restrictions 
on associations and inverse, symmetry, as well as transitivity  axiom^.^ The 
information is structured in 01-models, containing concepts,  association^,^ and 
instances at the same time. Unlike most logics, KAON does not introduce a 
specific syntax, but an abstract structure of 01-models instead. The following 
definitions are taken from [Maedche et al., 20031. For the sake of brevity, we 
only present the 01-model structure, the ontology structure and the modular- 
ization constraints. 

Definition 10.1 (01-model Structure) 
An 01-model (ontology-instance-model) structure is a tuple OIM := ( E ,  INC) 
where 

E is the set of entities of the 01-model, 

INC is the set of included 01-models. 

An 01-model represents a self-contained unit of structured information that 
may be reused. It consists of entities and may include a set of other 01-models 

' ~ t  the time of writing the book, KAON2 is just being developed. KAON2 is based on a more ex- 
pressive description logic and offers much more reasoning capabilities than its predecessor. h t tp :  
//kaon:!.sernanticweb.org 
3 ~ o t e  that associations are called properties in KAON. 
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(represented through the set INC. Different OI-models can talk about the same 
entity, so the sets of entities E of these OI-models do not need to be disjoint. 

Definition 10.2 (Ontology Structure) 
An ontology structure of an OI-model is a structure O(0IM) := (C ,  P, R, S ,  
T ,  INV, Hc, H p ,  domain, range, mincard, maxcard) where 

w C E is a set of concepts, 

P G E is a set of properties, 

rn R C_ P is a set of relational properties (properties from the set A = P \ R 
are called attribute properties), 

rn S C_ R is a subset of symmetric properties, 

w T c R is a subset of transitive properties, 

INV C R x R is a symmetric relation that relates inverse relational prop- 
erties: i f  (pl , pa) E INK then pl is an inverse relational property of p2, 

w Hc C C x C is an acyclic relation called concept hierarchy: if (cl , c2) E 
Hc then cl is a subconcept of c2 and c2 is a superconcept of cl, 

H p  C P x P is an acyclic relation called property hierarchy: if (pl , pa) E 
Hp then pl is a subproperty of p2 and p2 is a superproperty of pl, 

w function domain : P -t 2C gives the set of domain concepts for some 
property p E P, 

w function range : R -t 2c gives the set of range concepts for some relational 
property p E R, 

w function mincard : C x P -t No gives the minimum cardinality for each 
concept-property pail; 

w function maxcard : C x P --t (No U {oo))  gives the maximum cardinality 
for each concept-property pail: 

Each OI-model has an ontology structure associated with it, consisting of 
concepts (to be interpreted as sets of elements) and properties (to be interpreted 
as extensional relations between elements). Each property can have domain 
concepts. In addition, relational properties can have range concepts. Domain 
and range concepts constrain the types of instances to which the properties may 
be applied. If these constraints are not satisfied, the ontology is inconsistent. 
Relational properties may be marked as transitive and/or symmetric, and it is 
possible to say that two relational properties are inverse to each other. For 
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each concept-property pair it is possible to specify the minimum and maximum 
cardinalities. Concepts (properties) can be arranged in a hierarchy, as specified 
by the Hc ( H p )  relation, whose reflexive transitive closure follows from the 
semantics defined in [Maedche et al., 20031. 

Definition 10.3 (Modularization Constraints) 
Ifan 01-model OIM imports some other 01-model OIMl (with elements marked 
with subscript I ) ,  that is, ifOIMl E INC(OIM), then the following modular- 
ization constraints must be satisfied: 

El E,  C1 C ,  PI 2 P, R1 c R, Ti c T ,  INVl INV, Hc, Hc, 
H P ~  C- HP, 

Vp E Pl domain1 (p)  C- domain(p), 

H Vp E P I ,  Vc E Cl mincardl (c,  p) = mincard(c, p), 

Vp E P I ,  Vc E C1 macardl (c ,  p) = maxcard(c, p), 

Vc E Cl instconcl (c)  E instconc(c), 

According to Definition 10.3, reuse is supported by allowing an 01-model 
to include other 01-models, thus obtaining the union of the definitions from all 
included models. Cyclical inclusions are not allowed; that is, a graph whose 
nodes are 01-models and whose arcs point from including to included models 
must not contain a cycle. Inclusion is performed by reference. The models 
are virtually merged, but the information about the origin of each entity is 
represented explicitly.4 

3.2 Adaptation of Definitions and Axioms 
In this section we formulate all ontology modules by means of one KAON 

01-model per ontology module. 01-models include others according to the 
dependency graph depicted in Figure 7.1 on page 108. We start with the KAON 
SERVER module, which formalizes the domain knowledge discussed in Section 
1. The KAON SERVER 01-model includes the Core Ontology of Web Services, 
which in turn includes the Core Ontology of Software Components and so forth. 

4 ~ l e a s e  cf. [Maedche et al., 20031 for the definition of instconc and insfprop. 
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We preserve as much of the axiomatization as possible. Because of the lim- 
ited expressiveness of the KAON language, we can only capture concept and 
association hierarchies, domain, range and cardinality restrictions on associa- 
tions, and inverse, symmetry, as well as transitivity axioms. 

Defining the 01-models basically requires to revisit all definitions and ax- 
ioms. Let us give an example. Consider Axioms (A38) and (A39) on page 196, 
which define the nextlnterceptor association. In a first step, we have to insert 
nextlnterceptor into ErnoNsERVER because it is one of the entities of the KAON 
SERVER ontology discussed in this chapter. In the second step, we have to 
include it in P and in R since it is a "relational property," i.e., an association 
with a concept as range. Third, nextlnterceptor is defined as being transitive 
in (A39). Hence, it becomes an element of T. Fourth, (A38) specified next- 
Interceptor as a special kind of CS0:invokes. As a consequence, we add 
(nextlnterceptor, CS0:invokes) to Hp.  Fifth, nextlnterceptor links two In- 
terceptors, and, therefore, its domain and range point to Interceptor. Finally, 
(A38) lets us derive that there is at most one nextlnterceptor per Interceptor. 
Accordingly, we set mincard and maxcard to 0 and 1, respectively. 

KAON SERVER 
The 01-model KAONSERVER = (ErnONSERVER, INCMONSERVER) is the One 

that will finally be applied in the application server. It includes the concepts and 
associations of all other 01-models (including DOLCE and its modules) because 
of the transitive inclusions of 01-models. ErnONSERVER and INCKAONSERVER are 
defined as  follow^:^ 

ErnoNsERvER = {MBean, JARCollection, JAR, Argument, code, object, 
codebase, name, archive, version, arglist, nextArgument, type, value, 
FunctionalComponentProfile, SystemComponentProfile, 
ProxyComponentProfile, Interceptor, profileDepends, firstlnterceptor, 
nextlnterceptor) and INCmoNsERvER = {ECOWS). 

O~oNsERVER(KAONSERVER) consists of the following: 

rn C = {MBean, JARCollection, JAR, Argument, 
FunctionalComponentProfile, SystemComponentProfile, 
ProxyComponentProfile, Interceptor) 

rn P = {code, object, codebase, name, archive, arglist, nextArgument, 
version, type, value, profileDepends, firstlnterceptor, 
nextlnterceptor) 

5 ~ e  assume that for any property there exists an inverse. For the sake of brevity, we omit the definition of 
INV in the remainder of this section. 
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rn R = {archive, arglist, nextArgument, profileDepends, 
firstlnterceptor, nextlnterceptor) 

T = {nextlnterceptor) 

= Hc = {(MBean, COSC:SoftwareComponent), (Argument, 
CSO:Data), (JARCollection, DOLCE:Collection), (JAR, 
COSC:SoftwareLibrary), (FunctionalComponentProfile, 
COSC:ComponentProfile), (SystemComponentProfile, 
COSC:ComponentProfile), (ProxyComponentProfile, 
FunctionalComponentProfile), (Interceptor, CS0:Class)) 

H p  = {(nextlnterceptor, CS0:invokes)) 

domain(code) = {MBean) 
domain(object) = {MBean) 
domain(codebase) = {MBean) 
domain(name) = {MBean) 
domain(archive) = {MBean) 
range(archive) = {JARCollection) 
domain(arglist) = {MBean) 
range(arglist) = {Argument) 
domain(nextArgument) = {Argument) 
range(nextArgument) = {Argument) 
domain(version) = {MBean) 
domain(type) = {Argument) 
domain(value) = {Argument) 
domain(profileDepends) = {FunctionalComponentProfile) 
range(profi1eDepends) = {FunctionalComponentProfile) 
domain(firstlnterceptor) = {FunctionalComponentProfile) 
range(first1nterceptor) = {Interceptor) 
domain(nextlnterceptor) = {Interceptor) 
range(nextlnterceptor) = {Interceptor) 

mincard(MBean, code) = 0 
maxcard(MBean, code) = 1 
mincard(MBean, object) = 0 
maxcard(MBean, object) = 1 
mincard(MBean, codebase) = 0 
maxcard(MBean, codebase) = 1 
mincard(MBean, name) = 0 
maxcard(MBean, name) = 1 
mincard(MBean, archive) = 0 
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maxcard(MBean, archive) = 1 
mincard(MBean, arglist) = 0 
maxcard(MBean, arglist) = 1 
mincard(Argument, nextArgument) = 0 
maxcard(Argument, nextArgument) = 1 
mincard(MBean, version) = 0 
maxcard(MBean, version) = 1 
mincard(Argument, type) = 0 
maxcard(Argument, type) = 1 
mincard(Argument, value) = 0 
maxcard(Argument, value) = 1 
mincard(FunctionalComponentProfile, profileDepends) = 0 
maxcard(FunctionalComponentProfile, profileDepends) = oo 
mincard(FunctionalComponentProfile, firstlnterceptor) = 0 
maxcard(FunctionalComponentProfile, firstlnterceptor) = 1 
mincard(FunctionalComponentProfile, nextlnterceptor) = 0 
maxcard(FunctionalComponentProfile, nextlnterceptor) = 1 

Core Ontology of Web Services (COWS) 
The 01-model of the Core Ontology of Web Services COWS = (Ecows, 

INCcows) includes the 01-model of the Core Ontology of Software Components 
(COSC). 

Ecmc = {WebService, ServiceProfile, QualityOfService, 
invokesWebServiceWithPolicy) and INCcows = {Ecosc). 

Ocows(COWS) consists of the following: 

w C = {WebService, ServiceProfile, QualityOfService) 

= Hc = {(WebService, CSO:Software), (ServiceProfile, 
COSC:Profile), (QualityOfService, C0SC:Characteristic)) 

domain(invokesWebServiceWithPolicy) = {WebService) 
range(invokesWebServiceWithPolicy) = {WebService) 
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Core Ontology of Software Components (COSC) 
The 01-model of the Core Ontology of Software Components COSC = 

(Ecosc, INCcosc) includes the 01-model of the Core Software Ontology (CSO). 

Ecosc = {SoftwareComponent, SoftwareLibrary, License, 
IibraryDependsOn, IibraryConflictsWith, releasedunder, 
licenselncompatibleWith, Profile, ComponentProfile, describes, 
profiles, Characteristic, informationTimestamp, informationSource) and 
INCmc = {Ecso). 

Ocosc(COSC) consists of the following: 

w C = {SoftwareComponent, SoftwareLibrary, License, Profile, 
ComponentProfile, Characteristic) 

P = {IibraryDependsOn, IibraryConflictsWith, releasedunder, 
licenselncompatibleWith, describes, profiles, 
informationTimestamp, informationSource) 

w R = {IibraryDependsOn, IibraryConflictsWith, releasedunder, 
licenselncompatibleWith, describes, profiles) 

rn S = {IibraryConflictsWith, licenselncompatibleWith) 

rn T = {IibraryDependsOn) 

Hc = {(SoftwareComponent, CSO:Class), (SoftwareLibrary, 
CSO:Data), (Profile, OIO:lnformationObject), (ComponentProfile, 
Profile), (Characteristic, DnS:Parameter) ) 

w H p  = {(IibraryDependsOn, 
DOLCE:specificallyConstantlyDependsOn), (releasedunder, 
OIO:expresses), (describes, OIO:about), (profiles, DnS:defines), 
(profiles, DnS:unifies), (profiles, OIO:about), (profiles, 
0IO:expressedBy)) 

rn domain(libraryDepends0n) = {SoftwareLibrary) 
range(libraryDependsOn) = {SoftwareLibrary) 
domain(libraryConflictsWith) = {SoftwareLibrary) 
range(libraryConflictsWith) = {SoftwareLibrary) 
domain(releasedUnder) = {SoftwareLibrary) 
range(re1easedUnder) = {License) 
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dornain(licenselncompatibleWith) = {License) 
range(licenselncompatibleWith) = {License) 
dornain(describes) = {Profile) 
range(describes) = {CSO:Software) 
dornain(profiles) = {OIO:lnformationObject) 
dornain(profiles) = {DnS:SituationDescription) 
range(profi1es) = {CSO:Data) 
range(profi1es) = {DnS:ConceptDescription) 
range(profi1es) = (D0LCE:Collection) 
dornain(informationTimestamp) = (CS0:PolicyDescription) 
domain(inf~rmationTimestamp) = (C0SC:SoftwareLibrary) 
dornain(informationTimestamp) = (CS0:lnterface) 
dornain(informationTimestamp) = (0oP:Plan) 
domain(informationTimestamp) = (C0SC:Characteristic) 
dornain(informationSource) = {CSO:PolicyDescription) 
domain(informationSource) = (C0SC:SoftwareLibrary) 
dornain(informationSource) = (CS0:lnterface) 
dornain(informationSource) = (0oP:Plan) 
dornain(informationSource) = (C0SC:Characteristic) 

mincard(SoftwareLibrary, IibraryDependsOn) = 0 
rnaxcard(SoftwareLibrary, IibraryDependsOn) = oo 
rnincard(SoftwareLibrary, IibraryConflictsWith) = 0 
rnaxcard(SoftwareLibrary, IibraryConflictsWith) = oo 
rnincard(SoftwareLibrary, releasedunder) = 0 
rnaxcard(SoftwareLibrary, releasedunder) = oo 
rnincard(License, licenselncompatibleWith) = 0 
rnaxcard(License, licenselncompatibleWith) = co 
mincard(Profile, describes) = 1 
rnaxcard(Profile, describes) = oo 
mincard(CSO:PolicyDescription, informationTimestamp) = 0 
rnaxcard(CSO:PolicyDescription, informationTimestamp) = 1 
rnincard(COSC:SoftwareLibrary, informationTimestamp) = 0 
rnaxcard(COSC:SoftwareLibrary, informationTimestamp) = 1 
rnincard(CSO:lnterface, informationTimestamp) = 0 
rnaxcard(CSO:lnterface, informationTimestamp) = 1 
mincard(OoP:Plan, informationTimestamp) = 0 
rnaxcard(OoP:Plan, informationTimestamp) = 1 
mincard(COSC:Characteristic, informationsource) = 0 
rnaxcard(COSC:Characteristic, informationsource) = 1 
rnincard(CSO:PolicyDescription, informationsource) = 0 
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Core Software Ontology (CSO) 
The 01-model of the Core Software Ontology CSO = (Ecso, INCcso) in- 

cludes the 01-model of the Ontology of Information Objects (010), as well as 
the 01-model of the Ontology of Plans (OoP). 

Ecso = {Software, ComputationalTask, Data, AbstractData, identifies, 
Class, Method, Exception, dataType, methodRequires, methodYields, 
methodThrows, Interface, interfaceRequires, implements, executes, 
accesses, invokes, contextuser, Input, Output, inputfor, outputfor, 
User, UserGroup, Policysubject, PolicyObject, TaskCollection, 
computationalRightTowards, PolicyDescription, Constraint) and 
INCcosc = {Eo,o, E o O P ) .  

Ocso(CSO) consists of the following: 

C = {Software, ComputationalTask, Data, AbstractData, Class, 
Method, Exception, Interface, Input, Output, User, UserGroup, 
Policysubject, PolicyObject, TaskCollection, PolicyDescription, 
Constraint) 

= P = {identifies, dataType, methodRequires, methodyields, 
methodThrows, interfaceRequires, implements, executes, 
accesses, invokes, contextuser, inputfor, outputfor, 
computationalRightTowards) 

w T = {invokes) 

w Hc = {(Software, Data), (ComputationalTask, OoP:Task), (Data, 
OIO:lnformationObject), (AbstractData, Data), (Class, Software), 
(Method, Software), (Exception, Class), (Interface, Data), (Input, 
DnS:Role), (Output, DnS:Role), (User, AbstractData), (UserGroup, 
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DOLCE:Collection), (PolicySubject, DnS:AgentiveRole), 
(Policyobject, DnS:NonAgentiveRole), (TaskCollection, 
DOLCE:Collection), (PolicyDescription, DnS:SituationDescription), 
(Constraint, DnS:Parameter)) 

H p  = {(identifies, 0IO:about)) (interfaceRequires, 
DOLCE:properPart), (methodThrows, methodyields), 
(interfaceRequires, DOLCE:properPart), 
(computationalRightTowards, DnS:rightTowards), (contextuser, 
DnS:attitudeTowards), (inputFor, DnS:modalTarget), (outputFor, 
DnS:modalTarget), 

domain(identifies) = {AbstractData) 
range(identifies) = {DOLCE:Particular) 
domain(dataType) = {Data) 
range(dataType) = {DOLCE:Region) 
range(dataType) = {Data) 
domain(methodRequires) = {Method) 
range(methodRequires) = {Data) 
domain(methodYields) = {Method) 
range(methodYields) = {Data) 
domain(methodThrows) = {Method) 
range(methodThrows) = {Exception) 
domain(interfaceRequires) = {Interface) 
range(interfaceRequires) = {Method) 
domain(implements) = {Class) 
range(imp1ements) = {Interface) 
domain(executes) = {Software) 
range(executes) = {ComputationalTask) 
domain(accesses) = {ComputationalTask) 
range(accesses) = {Data) 
domain(invokes) = {Software) 
range(invokes) = {Data) 
domain(contextUser) = {User) 
range(contextUser) = {ComputationalTask) 
domain(inputFor) = {Input) 
range(inputFor) = {ComputationalTask) 
domain(outputFor) = {Output) 
range(outputFor) = {ComputationalTask) 
domain(computationalRightTowards) = {PolicySubject) 
range(computationalRightTowards) = {ComputationalTask) 
range(computationalRightTowards) = {TaskCollection) 
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= mincard(Data, identifies) = 0 
maxcard(Data, identifies) = 1 
mincard(Data, dataType) = 0 
maxcard(Data, dataType) = 1 
mincard(Method, methodRequires) = 0 
maxcard(Method, methodRequires) = oo 
mincard(Method, methodyields) = 0 
maxcard(Method, methodyields) = 1 
mincard(Method, methodThrows) = 0 
maxcard(Method, methodThrows) = oo 
mincard(lnterface, interfaceRequires) = 1 
maxcard(lnterface, interfaceRequires) = oo 
mincard(Class, implements) = 0 
maxcard(Class, implements) = oo 
mincard(Software, executes) = 0 
maxcard(Software, executes) = oo 
mincard(ComputationaITask, accesses) = 0 
maxcard(ComputationaITask, accesses) = oo 
mincard(Software, invokes) = 0 
maxcard(Software, invokes) = oo 
mincard(lnput, inputfor) = 0 
maxcard(lnput, inputfor) = oo 
mincard(O~tp~t, outputfor) = 0 
maxcard(O~tp~t, outputfor) = oo 
mincard(User, contextuser) = 0 
maxcard(User, contextuser) = 1 
mincard(User, computationalRightTowards) = 0 
maxcard(User, computationalRightTowards) = oo 
mincard(UserGroup, computationalRightTowards) = 0 
maxcard(UserGroup, computationalRightTowards) = oo 

Modelling Basis (DOLCE, DnS, OoP, 0 1 0 )  

Finally, each ontology module of our modelling basis (DOLCE, Descriptions 
& Situations, the Ontology of Plans and the Ontology of Information Objects) 
becomes a separate OI-model. However, Descriptions & Situations and the 
Ontology of Information Objects mutually depend on each other (cf. Figure 7.1 
on page 108). Hence, we have to put both in one OI-model. 

For the sake of brevity, we do not present the respective ontology structures 
here. All the modules are available in a description logic (OWL DL). The en- 
tirety of this application version is called DOLCE Li te Plus (DLP). Their axiom- 
atization underwent a similar process such as our contributed modules, i.e., the 
axiomatization was adapted to application purposes. For example, temporally 
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indexed (and, thus, ternary) associations were decomposed by newly introduced 
temporal associations. For this work, we have obtained the KAON 01-models 
from the description logic files by means of RDFS exports and imports, respec- 
tively. Creating the KAON version then boils down to manually maintaining 
symmetry, transitivity, inverses, and cardinality restrictions. The KAON ver- 
sion of the modelling basis is also available at h t t p  : / /cos  . ontoware. org. 

4. Assessment 
This section responds to the Cardinal Question: Can ontologies be used to 

facilitate the development and management of middleware-based applications 
for developers and administrators?). Demonstrating that we have achieved our 
goal of facilitating the management of middleware proves to be problematic for 
two reasons. 

First, the complexity of application servers makes it very difficult to single 
out, measure, and evaluate improvements of any kind. As explained in Chapter 
2, Section 3.1, page 18, an application server consists of many interwoven parts. 
Often an application server subsumes several other types of middleware in one 
product. 

Second, it is usually difficult to substantiate the advantages of ontology-based 
applications in numbers. The best way to demonstrate their benefits is to have 
a modularized application and to perform a controlled experiment. Modules 
providing the same functionality with and without the usage of ontologies have 
to be applied and the application evaluated each time. Such experiments are 
difficult to set up and in many cases the nature of the application makes it im- 
possible. This is the case with semantic management because its usage is spread 
throughout the target platform. Furthermore, the developer and administrator 
have to familiarize with ontologies and semantic technology in general, much 
like they have or had to familiarize with deployment and WS* descriptors. In 
both cases, it would be necessary to compare the effort of familiarization with 
the savings of management efforts and to each other. In addition, we have 
to take into account efforts for maintaining the ontology (because ontologies 
typically evolve over time). 

Because it is very difficult to find measures for a sensible comparison, we 
take a qualitative approach for assessing the benefits of semantic management. 
We basically revisit the use cases introduced in Chapter 4, Section 2, starting 
on page 65, and compare management and modelling efforts with and without 
semantic management. 

While the modelling efforts are independent of the underlying semantic tech- 
nology, we encounter a trade-off between management efforts and reasoning 
capabilities. Our use cases require a whole bandwidth of reasoning capabilities: 
one requires subsumption reasoning; another uses the reified satisfaction of De- 
scriptions & Situations; others require browsing and querying; and so forth. As 
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a consequence, some use cases cannot be realized with KAON or require man- 
agement efforts that could have been saved with more powerful reasoning. This 
is due to KAON's limited reasoning capabilities. In essence, there is not much 
more than subsumption, transitivity and symmetry. A description logic reasoner 
is far more powerful and might save management efforts accordingly. We will 
consider this issue when inspecting the use cases in the following sections. 

4.1 Application Server Use Cases 
We start our assessment with an effort comparison for the similar Library 

Dependencies and Versioning and Licensing use cases in Table 10.3. Without 
our approach, no modelling efforts have to be expended, but the developer has to 
check for conflicting libraries each time the classpath is changed. Expert knowl- 
edge is required to avoid run time failures, e.g., when a l i b 1  . jar conflicts with 
a l i b 2 .  jar. In a system that supports semantic management, we have to model 
C0SC:libraryConflictsWith and C0SC:licenselncompatibleWith between 
C0SC:SoftwareLibraries and COSC:Licenses, respectively. A check then 
boils down to a simple query with KAON, as well as with a DL reasoner. KAON 
Query suffices because this use case only requires transitivity and symmetry 
reasoning. 

Table 10.3. Effort comparison for the Library Dependencies and Versioning and Licensing use 
cases. 

Effort I Without semantic management I Using semantic management 
Management I For n libraries in the classpath: I n simple queries for 

The Capability Descriptions use case deals with the fact that components 
often adhere to standard interfaces, but differ in their capabilities. In this case, 
the developer has to react to all possible cases in the code anytime the interface is 
accessed. Semantic management allows obtaining such information manually 
or automatically from the C0SC:ComponentProfile by browsing or querying, 
respectively. We compare the efforts in Table 10.4. KAON's limited reasoning 
capabilities might require more or less management efforts depending on the 
complexity of the query. That means, the result might have to be (partially) 
obtained by coding in comparison to a much more powerful DL reasoner. 

Component Classijkation and Discovery and Semantics of Parameters ad- 
dress the problem of searching or comparing functionality over a large number 
of component API's at development time. Such tasks are very tedious without 

Modelling 
( t )  manual comparisons 

None 
C0SC:IibraryConflictsWith 

Model C0SC:libraryConflictsWith or 
C0SC:licenselncompatibleWith 

libraries or licenses 
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Table 10.4. Effort comparison for the Capability Descriptions use case. 

Effort I Without semantic management I Using semantic management 
Management I Code extensive distinction of I Browse or query C0SC:Component- 

our approach because they require source code analyses and coding of possi- 
ble cases when the semantics of parameters are not specified. As shown in 
Table 10.5, semantic management requires modelling the components' CS0:- 
Interfaces, but allows convenient browsing and querying possibilities at de- 
velopment time. Like with the previous use case, the management effort with 
KAON might be higher depending on the complexity of the query. 

Modelling 

Table 10.5. Effort comparison for the Component ClassiJication and Discovery and Semantics 
of Parameters use cases. 

Effort 

extensive coding of possible cases CS0:lnterfaces in the 
and exception handling C0SC:ComponentProfiles 

Modelling Model CS0:lnterfaces 

cases and exception handling 
to avoid run time failures 

None 

The benefits of the next use case, viz., Automatic Generation of Web Service 
Descriptions, are a desirable side effect of semantic management. Given the 
savings of management efforts of all the other use cases, this use case proposes 
to generate specific WS* descriptions from the ontology a u t ~ m a t i c a l l ~ . ~  WS- 
BPEL documents could be generated from a corresponding OoP:Plan, for 
instance. No additional modelling efforts have to be expended if the 0oP:Plan 
already exists (cf. Table 10.6). 

For the Access Rights use case, we return to our motivating example on page 
23, which discusses the indirect permission of the WebShopServlet to the 
Customer table via a context switch. We have already seen that discovering 
such situations is a very costly task. Using semantic management, we can con- 
veniently evaluate or query for C0SC:indirectlyAccessibleResource with 
no additional modelling efforts when we use a DL reasoner. While KAON is 

Profile to obtain the component's 
C0SC:Characteristics 

Model C0SC:Cornponent- 
Profile once 

6 ~ h i s  is a use case for model-driven deploymenr as proposed in Chapter 8, Section 1.3. 



214 SEMANTIC MANAGEMENT OF MIDDLEWARE 

Table 10.6. Effort comparison for the Automatic Generation of Web Service Descriptions use 
cases. 

able to reason with the transitivity of CSO:invokes, it cannot handle its de- 
composition into CS0:executes and CS0:accesses. Additional coding is 
necessary to obtain the result. Table 10.7 depicts the management effort in the 
DL case. 

Effort 
Management 
Modelling 

Table 10.7. Effort comparison for the Access Rights use case with a DL reasoner. 

Without semantic management 
Compare other use cases 

Modelling the Web service 
descriptions, e.g., WS-BPEL 

Using semantic management 
Compare other use cases 

No additional efforts required if 
information exists in the ontology, 

e.g., 0oP:Plan 

Effort 

Table 10.8 compares the efforts for the Exception Handling use case. We 
can see that semantic management avoids the tedious manual surveying of 
exceptions in the source code by justifiable modelling efforts. The savings 
in management effort depend on the reasoning capability. Complex queries 
require additional efforts when using KAON. 

Without semantic management I Using semantic management 

Modelling 

Table 10.8. Effort comparison for the Exception Handling use case. 

Management I For i scrvlets, j EJBs, k tables: compare I i evaluations of 
i web. xml files and code, j e j b- jar. xml 

files and k table metadata 
Creating and maintaining 

i web. xml, j e jb- j ar . xml 
descriptors and k metadata tables 

Finally, the similar Transactional Settings and Secure Communication use 
cases require a manual check of the transactional or security settings of a chain 
of calls across components without our approach. Modelling of workflow in- 
formation, as well as the transactional and security settings, are necessary to 

C0SC:indirectlyAccessible- 
Resource 

Same as without semantics 
because semantic descriptions 

are automatically obtained 

Effort 
Management 

Modelling 

Without semantic management 
Survey calling stack and 

component dependencies and 
check if exceptions are caught 

None 

Using semantic management 
Browsing or simple querying of the 

API descriptions (i.e., CS0:Methods 
and CS0:Exceptions) 

Modelling API descriptions 
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check the validity by a simple query. We encounter the same dilemma between 
management efforts and reasoning capabilities as with the Access Rights use 
case. 

Table 10.9. Effort comparison for the Transactional Settings and Secure Communication use 
cases vsing a DL reasoner. 

I settings for participating components I 
Modelling I None I Modelling of workflow information 

Effort 
Management 

via 0 o ~ : ~ l a n  and settings 
via C0SC:ComponentProfiles 

4.2 Web Services Use Cases 
The first Web services use case considered in Chapter 4, Section 2, page 70, 

was Analyzing Message Contexts, which is very similar to the application server 
use cases Access Rights, Transactional Settings, and Secure Communication. 
Hence, we refer the reader to Tables 10.7 and 10.9 for the comparison. 

The use case of Selecting Sewice Functionality is similar to one of the appli- 
cation server use cases, viz., Component ClassiJication and Discovery, whose 
efforts are compared in Table 10.5. 

For the similar Policy Handling and Relating Communication Parameters use 
cases, we demonstrate the benefits by our motivating example in Chapter 2, Sec- 
tion 3.2, page 30, which discusses the integration of WS-BPEL and WS-Policy 
descriptors. We have learned that discovering external service invocations with 
attached policy remains a pure manual task. Using semantic management, we 
can simply query with no additional modelling efforts (cf. Table 10.10). The 
dilemma between management efforts and reasoning capabilities is similar to 
the Access Rights use case in the previous section. 

Table 10.1 1 compares management and modelling efforts for the Detecting 
Loops in Interorganizational WorkJows use case. The use case proposes the 
parsing and integration of WS-BPEL descriptors to enable a check for cycles 
in the invocation chain across WS-BPEL documents, for instance. Without 
our approach, this check has to be done by hand, what can be rather expensive 
considering large numbers of processes. Semantic management only requires 
a simple query with no additional modelling efforts. We encounter the same 
dilemma between management efforts and reasoning capabilities as with the 
Access Rights application server use case. 

Without semantic management 
For a chain of calls: 

compare transactional or security 

Using semantic management 
One query involving 0oP:Plan 

and C0SC:ComponentProfiles 
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Table 10.10. Effort comparison for the Policy Handling and Relating Communication Param- 
eters use cases using a DL reasoner. 

Effort 

Table 10.11. Effort comparison for the Detecting Loops in Interorganizational WorkJows use 
case with a DL reasoner. 

Without semantic management I Using semantic management 

Modelling 

Management I For each process in a WS-BPEL document: I One query to rctricvc 

Regarding the use case of Incompatible Inputs and Outputs, we refer the 
reader to the Semantics of Parameters use case in Table 10.5 in the previous 
section. Both use cases are similar with comparable modelling and management 
efforts. 

Monitoring of Changes addresses the problem of changing interfaces in a 
loosely coupled environment. Changes of used services have to be detected and 
depending services have to be identified and adapted. Without our approach this 
remains a manual effort. In contrast, semantic management supports the devel- 
oper in detecting such changes and identifying the depending service (cf. Table 
10.12). KAON is capable of handling such queries. Hence, the management 
efforts are the same compared to a DL reasoner. 

The Aggregating Service Information use case discusses the automatic calcu- 
lation of first-cut quality of service parameters for composite services. In order 
to obtain such numbers automatically, service parameters have to be modelled 
for each of the composed services. The alternative is to obtain such informa- 
tion manually, which is particularly tedious if the composite service contains a 
large number of composed services. Table 10.13 compares the efforts in both 
cases. The limited reasoning capabilities of KAON might require more or less 
management efforts depending on the complexity of the query. 

Check for external Web service invocation 
and existence of WS-Policy document 

creating and maintaining the 
WS-BPEL and WS-Policy documents 

Effort 
Management 

Modelling 

ext. web-service invocations 
with attached policies 

Same as without semantics 
because semantic descriptions 

are automatically obtained 

Without semantic management 
Check whether external service 
invocations lead to loops in one 
or more WS-BPEL documents 
Creating and maintaining the 

WS-BPEL documents 

Using semantic management 
One query on an 0oP:Plan 
to retrieve cyclic invocations 

Same as without semantics 
because semantic descriptions 

are automatically obtained 
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Table 10.12. Effort comparison for the Monitoring of Changes use case. 

Effort I Without semantic management ( Using semantic management 
Management I Manual monitoring of changes, I One query for detecting the change, I detecting and adapting each I one query to detect depending 

depending comaonent or service comaonents or service. adavtation 
Modelling None None 

because semantic descriptions 
are automatically obtained 

Table 10.13. Effort comparison for the Aggregating Service Information use case. 

Effort I Without semantic management I Using semantic managcmcnt 
Management ( For each composite service: I For cach compositc scrvice: 

Finally, the Quality of Sewice use case suggests the gathering of one's own 
data about the reliability or availability of used services in the ontology. The 
semantic descriptions can be exploited to route service requests to the most 
reliable service endpoint, for instance. When applying semantic management, 
the most reliable service can be obtained by a simple query. Otherwise, the 
application logic has to be hard-coded, leading to an inflexible system with 
higher maintenance, and, thus management efforts. Table 10.14 compares the 
efforts in both cases. Like with the previous use case, the management effort 
with KAON might be higher depending on the complexity of the query. 

Modelling 

Table 10.14. Effort comparison for the Quality of Service use case. 

Effort I Without semantic management I Using semantic management 
Management I Code and maintain the best I One query to select the 

Obtain first-cut data manually 
None 

One query to obtain first-cut data 
QualityOfService parameters 

for composed services 

I I for each service 

fitting service manually 

5. Summary 
In this chapter we have answered the Question 111.4: How to reuse the ontol- 

ogy? by taking the following steps: ( i )  we have specialized the core concepts 
and associations of the management ontology to reflect the idiosyncracies of 

best fitting service 
Modelling I None I QualityOfService parameters 
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the KAON SERVER. (ii) We have removed concepts and associations that 
were introduced merely for reference purposes and (iii) we have adapted the 
axiomatization to the KAON language. The resulting domain, application 
and lightweight version of the management ontology is actually applied in the 
KAON SERVER and can be obtained from h t t p  : //cos . ontoware. org. 

Finally, we have assessed the benefits of semantic management thus answer- 
ing the Cardinal Question from the Introduction: Can ontologies be used to 
facilitate the development and management of middleware-based applications 
for developers and administrators? We have taken a qualitative approach for 
assessment by revisiting the use cases introduced in Chapter 4, Section 2 and 
comparing management and modelling efforts with and without semantic man- 
agement. The assessment demonstrated that the rather modest modelling efforts 
are clearly outplayed by the savings in management efforts. 
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FINALE 



Chapter 1 1 

RELATED WORK 

This chapter provides an overview of related work by classifying relevant lit- 
erature according to research communities and areas, rather than by classifying 
according to the organization of the book. 

Generally speaking, this work applies the methodologies and tools of the 
Semantic Web research community to solve some of the problems of the Mid- 
dleware community. Both communities put forth some technologies and ap- 
proaches relevant for our work. First, we find the established technology of En- 
terprise Application Management (Section 1 ) .  Enterprise application manage- 
ment comprises the processes that are used to monitor and control the software 
elements that make up application systems. It is a very broad field that starts at 
network management and ends at automatic software distribution to the desk- 
top. Second, the paradigm of Model-Driven Architectures (MDA) has gained 
wide-spread influence in software engineering (Section 2). The principal idea 
of MDA is to separate conceptual concerns from implementation-specific con- 
cerns. MDA achieves this separation by factorizing the two concerns, specifying 
them separately via models and compiling them into an executable. Method- 
ologies and tools of UML are used to capture the models. Third, we relate some 
approaches that show the bias towards integrating WS* descriptions in Section 
3, although we already introduced the reader to Web services in Chapter 2, 
Section 3.2. Fourth, Semantic Web Services are a field of research opting for 
a wide-reaching formalization that allows full automation of the Web service 
management tasks, such as discovery and composition (Section 4). Finally, we 
relate miscellaneous efforts and technologies that cannot be classified in the 
aforementioned categories (Section 5). 
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1. Enterprise Application Management 
Application management can be considered as the task of monitoring and 

controlling the software elements that make up application systems. It includes 
people, policies, procedures and tools to manage the millions of software el- 
ements and configurations that exist in a corporate computing network. This 
can include practices that take place when new desktop systems are purchased, 
such as reformatting of the hard drive or installing standard configurations. It 
may also include the use of automated tools that analyze and update the con- 
figuration of systems. It may consist of traditional practices, such as manual 
inventories of software installed on desktop systems, software distribution, so- 
phisticated performance measurement, and control systems using policy-based 
service-level agreements. [Sturm and Bumpus, 1998, Cho and Ejiri, 20041 

Enterprise application management is related to our work in two ways. First, 
corresponding management systems share some of our use cases simply because 
the management of middleware-based applications is a part of application man- 
agement. Hence, it is a worthy challenge to semantically enhance also such 
management systems (as already discussed in Chapter 8, Section 1.1). We 
discuss such systems in Section 1 .l .  Second, the schemas of enterprise appli- 
cation management, such as MIB or CIM are (semi-formal) conceptual models 
that can be a source for semantic descriptions (cf. Chapter 8, Section 1.2). We 
discuss the management schemas in Section 1.2. 

1 .  Application Management Systems 
Enterprise application management can be seen as the task of monitoring 

and controlling applications in an enterprise so that they can be made resilient 
to failures, configurable to changing needs of the business, accountable for 
billing and auditing, capable of performing under varying workloads and se- 
cure to intended or unintended attacks. There have been several attempts at 
standardizing such tasks in the context of conventional middleware. For ex- 
ample, CORBA (cf. Chapter 2, Section 3) specifies lifecycle interfaces for 
configuration management, and the Java Management Extensions specify a 
framework for defining management interfaces on Java objects [Lindfors and 
Fleury, 20021. One of the first efforts, however, stems from the International 
Standards Organisation (ISO), which introduced the Simple Network Manage- 
ment Protocol (SNMP) defining a set of objects called application Management 
Information Bases (MIB's) [Kalbfleisch et al., 19991. Furthermore, Applica- 
tion Response Measurement (ARM) is a standard for managing performance 
events from applications.' 

'http: //www . opengroup. org/management/arm. htm 
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All the management standards that have been described aim at defining in- 
terfaces between the management system and managed applications. Some of 
these interfaces are useful in sending data from the application to the manage- 
ment system (e.g., SNMP, CIM, ARM). These are called data integaces or 
instrumentation integaces. Others are used by the management system to exe- 
cute control actions on the application (e.g., JMX, CORBA lifecycle interfaces, 
SNMP, CIM). These are called control integaces. 

The infrastructure that manages applications using these interfaces is called 
an enterprise application management system. Examples of commonly used 
application management systems are HP ~ ~ e n ~ i e w , ~  Computer Associates 
~ n i c e n t e r , ~  and IBM ~ i v o l i . ~  

Enterprise application management systems share some of our use cases 
because the management of middleware-based applications can be considered 
a part of application management. As already discussed in Chapter 8, Section 
1.1, such systems can thus be regarded as a possible platform for semantic 
management. 

Web Services Management 
Application management is currently extended to Web services. The Orga- 

nization for the Advancement of Structured Information Standards (OASIS) is 
standardizing a Web Services Distributed Management (WSDM) spe~ification.~ 
Its first part, MUWS (Management Using Web Services), defines how an infor- 
mation technology resource connected to a network can provide manageability 
interfaces so that the IT resource can be managed locally and remotely using 
Web services technologies. It is the foundation of enabling management appli- 
cations to be built using Web services and allows resources to be managed by 
many applications with one set of instrumentation. 

Its second part, MOWS (Management of Web Services), is closely related to 
our work. It defines the manageability model for managing Web services as 
a resource and specifies how to describe and access that manageability using 
MUWS. MOWS can be seen as an extension of enterprise application man- 
agement and has two sides: management of applications within an enterprise 
and management of relationships with other Web services across enterprises. 
The challenges in and approaches to dealing with the first side of Web services 
management are very similar to those in traditional application management. 
However, Web services simplify certain aspects of application management 
through their standardized abstractions. The second side of Web services man- 

2http: //www. managementsoftware. hp. corn/ 
3http: //ca. com/unicenter 
4http: //www. tivoli. com 
'http: //WWW. oasis-open. org/committees/tc-home. php?wg-abbrev=wsdm 
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agement (i.e., managing relationships with other Web services) raises a com- 
pletely new set of challenges, since cross-enterprise interactions were not dealt 
with before in application management. These are some of the challenges we 
have addressed in our use cases (Chapter 4, Section 2.2). Applying seman- 
tic technology can be leveraged in corresponding Web service management 
systems to make them even more powerful by reasoning capabilities. Accord- 
ingly, we have proposed such management systems as a possible platform for 
semantic management in Chapter 8, Section 1.1. Besides WSDM, there are 
also proprietary efforts, e.g., [Tosic et al., 20041. 

Management of Application Servers 
In contrast to the standardization efforts of application management, and also 

of Web services management, the management of application servers remains a 
proprietary effort. In principle, every application server defines its own manage- 
ment model, with proprietary tools and graphical user interfaces. Some provide 
integration with application management systems, e.g., IBM Websphere with 
IBM ~ i v o l i . ~  Like Web service management systems, the management of ap- 
plication servers can be improved by semantic technology as we proposed in 
this thesis. 

1.2 Application Management Schemas 
The effort of developing a unified model for systems management emerged 

from the Distributed Management Task Force (DMTF). This model is being 
referred to as the Common Information Model (CIM) - an industry effort to 
develop a common object model for management. The Applications Manage- 
ment Working Committee of the DMTF has been working to unify the IETF, 
POSIX, DMTF, and the Tivoli AMS models of application management. It is 
interesting to note the similarities between these models and the different terms 
that have been developed to represent the same concepts. For example, what the 
POSIX model refers to as "file set," the DMTF refers to as "software element." 

The DMTF realized the importance of developing a common model of an 
application and of using a common terminology because future management 
technologies will leverage standard models and nomenclatures. It is becoming 
increasingly difficult for management application vendors to provide agents, 
infrastructure and user interfaces for all of the complex networked elements. 
Using a common model enables greater interoperability. Management appli- 
cations developers may also leverage the information that is available. [Sturm 
and Bumpus, 19981 

6http: //www-306. ibm. com/sof tware/tivoli/f eatures/websphere/integration. html 
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On the one hand, CIM is comparable to our work in conceptually harmonizing 
the different existing schemas for application management. However, the CIM 
schemas are semi-formal and do not allow reasoning as a consequence. On 
the other hand, the CIM schemas have been considered as a potential source 
for obtaining semantic descriptions (cf. Chapter 8, Section 1.2). For example, 
there is a CIM schema for J2EE application servers as depicted in Figure 11.1 

GroupComponent: ref ManagedSystemElement [key] 
PartComponent: ref ManagedSystemElement [key] 

PartComponent : ref SystemResource (7 
4 

I 
ServceComponent 

GroupComponent. ref Sew~ce (') 
PartCornponent ref Sewlce (') 

SystemComponent 
GroupComponent : ref System (') 
PartCornponent ' ref ManagedSystemElement (') 

J 
JZeeEJBlnModule 

t GroupComponent ref JZeeEJBModule (1) - 
PartComponent ref JZeeEJB (1 .n) 

JPeeSewerlnDomain 
GroupComponent ref JZeeDomain (1) 
PartComponent ' ref JZeeSe~er (1 ..n) 

GroupComponent: ref JZeeWebModule (1) - 
PartComponent: ref JZeeSewlet (1 .n) 

Figure 11.1. CIM for J2EE Application Servers. [ h t t p :  //www. dmtf . org] 

Very similar approaches are application Management Information Bases 
(MIB's) and the MOWS schema for Web service management. The first ap- 
proach stems from the International Standards Organization (ISO), which in- 
troduced the Simple Network Management Protocol (SNMP) defining a set 
of objects called Management Information Bases (MIB's) for managing appli- 
cations. There is a plethora of MIB's for different purposes, e.g., MIB's for 
printers, routers, FTP servers, or for information modelling to support service 
and network management integration [Daho et al., 20041. The second ap- 
proach is the MOWS (Management of Web Services) Schema from OASIS, 
which defines states and properties of managed Web  service^.^ 

' h t t p :  / / d o c s .  o a s i s - o p e n .  org/wsdm/2004/12/wsdm-mows- I .  0 . p d f  
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2. Model-Driven Architectures 
Throughout the history of computing systems, we have witnessed a remark- 

able evolution regarding the level of software reuse. Several kinds of software 
building blocks were developed with ever increasing abstraction and encapsu- 
lation of functionality. In the earliest computer systems, functions were the 
predominant software building blocks, returning the same result for a given in- 
put every time. However, functions are not suitable as soon as outputs depend 
on knowledge of previous deductions. In order to respond to this shortcom- 
ing, subroutines and libraries were introduced in the sixties and seventies. It 
quickly became apparent that sharing data between subroutines was desirable. 
However, coordinating concurrent and competing access to a global data struc- 
ture between different libraries proved to be a maintenance problem. Thus, the 
object was born, encapsulating data and functionality (often called behavior in 
this case). Objects are still small-scale compared to the size of the systems we 
build today. It soon became apparent that there is benefit in reusing a collection 
of related objects together. The result was yet another software building block, 
viz., software components, enabling reuse at a higher level. 

Even with these advances in the level of reuse, it is nonetheless difficult 
to reuse applications. There are more and more reimplementations of exist- 
ing functionality because the underlying platforms change (e.g., updates of the 
operating system) or because of improving and progressing technology (e.g., 
new versions of Java). It is this shortcoming that the concept of Model-Driven 
Architectures (MDA) addresses [Mellor et al., 20041. The principal idea of 
MDA is to separate conceptual concerns from implementation-speciJic con- 
cerns. MDA achieves this separation by factorizing the two concerns, spec- 
ifying them separately and compiling them into an executable application. 
Methodologies and tools of UML are exploited to capture the concerns by mod- 
els. Platform-independent models specify the conceptual concerns, whereas 
platform-specific models specify the implementation-specific concerns. Trans- 
formation rules define how to obtain different platform-dependent models from 
platform-independent ones. Thus, models become the unit of reuse and can be 
considered an asset resilient to changing platforms and technologies. 

There are approaches that apply MDA for middleware-based applications 
[Gokhale et al., 2004, Brambilla et al., 20051, or application management 
[Debusmann et al., 20041. However, in contrast to our work, MDA uses the 
models mainly to specify development aspects with focus on distinguishing 
platform-independent from platform-specific aspects, as well as on the defini- 
tion of transformation rules between them. While something similar can be 
done also for the management of middleware, the main use case of MDA is to 
generate an executable application out of the platform-independent model. Our 
approach focuses on run time relevant characteristics of component and service 
management, such as which version of an application interface requires which 
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versions of libraries. We exploit the logic-based semantics of ontologies for 
querying the inference engine in an application server whether configurations 
are valid or whether further components are needed. Ontologies are best-suited 
for this purpose. 

While UML has not been based on ontologies initially, there is a tendency to 
bring the two worlds closer together. In 2003, the Object Management Group 
(OMG), the institution responsible for MDA, issued a request for the proposal 
of an Ontology Definition Metarnodel (ODM). This was done in order to support 
the development of ontologies using UML modeling tools, the implementation 
of ontologies in the W3C Web Ontology language OWL, as well as forward 
and reverse engineering for ontologies. Several proposals have been issued so 
far, e.g., [Hart et al., 20041. It remains to be seen whether ODM would allow 
realizing our approach with UML and MDA technologies. 

3. Web Services 
We have already introduced the reader to Web services in Chapter 2, Section 

3.2. We have seen that developers must face the multitude of descriptor files 
introduced by WSDL [Christensen et al., 20011, WS-BPEL [Andrews et al., 
20051, WS-Security [Atkinson et al., 20021, WS-Transaction [Cabrera et al., 
20041, WS-Trust [BEA Systems et al., 20041, WSCI [Arkin et al., 20021, 
WSCL [Banerji et al., 20021, WS-Coordination [Cabrera et al., 20031, UDDI 
[UDDI Coalition, 20001, etc. Because of their sheer number and disjointness, 
managing Web services with the WS* speciJication creates high costs for the 
developer. However, several approaches clearly demonstrate that there is a ten- 
dency to integrate all the disjoint information. The late JSR 181 [Trezzo and 
Mihic, 20041, e.g., defines a standard way to build and deploy Web services 
without learning and implementing generalized API's and deployment descrip- 
tors. The new Java 1.5 source code metadata annotation mechanism is used to 
flexibly define corresponding tags. Proprietary efforts like JBoss.Net and also 
Microsoft's .NET IDE take a similar approach. The development is facilitated 
because a familiarization with all the descriptor files is no longer necessary. 

[Tai et al., 2004a1 investigate the combination of WS-BPEL with WS- 
Coordination, WS-AtomicTransaction and WS-BusinessActivity using WS- 
Policy to support the definition of production workflows for Web services. They 
introduce coordination policies and specific WS-BPEL coordination policy at- 
tachments to compose Web services that require coordination protocols for in- 
teraction. They define the semantics of the proposed policy-based composition 
model and discuss the methods, the programming model, and the middleware 
support required for defining and executing composed and coordinated services. 
In [Tai et al., 2004b1, they discuss a new approach to policy-based transactional 
coordination of services. They propose attaching policies to WSDL and WS- 
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BPEL definitions. The policies can be applied to the Web services specifications 
WS-Coordination, WS-Transaction, and WS-ReliableMessaging. 

These are just some of the approaches that show the tendency to integrate the 
so far separated aspects of WS* descriptions. However, the missing coherent 
formal model of WS* makes it difficult to ask for, possibly undesirable, con- 
clusions that arise from integrating several WS* descriptions. In contrast, our 
approach uses ontologies as explicit conceptual model whose underlying logic 
provides concise formal semantics and allows reasoning with such descriptions. 

An exception are [Agarwal et al., 20051, who find that the main approaches 
taken thus far to standardize and compose Web services are piecemeal and insuf- 
ficient. The business world has adopted a distributed programming approach in 
which Web service instances are described using WSDL, composed into flows 
with a language, such as WS-BPEL, and invoked with the SOAP protocol. The 
field of Semantic Web Services (cf. Section 4) propounds the approach of for- 
mally representing Web service capabilities in ontologies, and reasoning with 
their composition using goal-oriented inferencing techniques from planning. 
This new approach presents the first integrated work in composing Web ser- 
vices end to end from specification to deployment by synergistically combining 
the strengths of the above approaches. 

4. Semantic Web Services 
The principal objective of Semantic Web Services is a wide-reaching formal- 

ization that allowsfull automation of the Web service management tasks, such 
as discovery and composition [McIlraith et al., 20011. This field of research has 
articulated the shortcomings of WS* standardizations and has been presenting 
interesting proposals to counter some of them. The core of their proposals lies 
in creating semantic standards for the markup of Web services. The potential 
advantage is the reduction of management efforts to a minimum. The disad- 
vantages, however, are also apparent. It is not clear, what kind of powerful 
machinery could constitute a semantic model that would allow for full automa- 
tion, nor does it appear to be possible that real-world software developers could 
specify a semantic model of Web services that would be fine-grained enough 
to allow for full automation anytime soon. Therefore, our approach of seman- 
tic management of Web services does not propose to tackle full automation 
of all Web service management tasks. We claim that the full breadth of Web 
Service management requires an understanding of the world that is too deep 
to be modelled explicitly. Instead, we have presented a more passive role for 
semantic management of Web services - one that is driven by the needs of the 
developers who must cope with the complexity of Web service integration and 
WS* descriptions. 

We now discuss several existing ontologies and frameworks for Semantic 
Web Services. We can summarize the differences to all of them as follows: (i) 
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the ontologies are of low quality with respect to the ontology quality criteria 
introduced in Chapter 3, Section 1, page 41. They are hardly axiomatized and, 
thus, cover many unintended models leading to conceptual ambiguity, loose de- 
sign and narrow scope (as demonstrated by the example of OWL-S in Chapter 
5, Section 3). This is in conflict with our goals of having a high-quality on- 
tology with heavyweight axiomatization and reference characteristic. (ii) The 
frameworks altogether aim at full automation of all management tasks incur- 
ring high modelling efforts. In contrast, our approach arrives at a minimum of 
management and modelling efforts as discussed at the beginning of Chapter 4. 
In addition, we do not propose a semantic standard for Web service description, 
such as some of the approaches do. The reverse engineering approach does 
not intervene with existing WS* specifications (which have yet to gain accep- 
tance besides WSDL and WS-BPEL). We apply semantic technology within 
an application server and, thus, within the scope of an organizational unit, to 
facilitate some of the typical management tasks. 

4.1 OWL-S 
As discussed in Chapter 5, Section 1, OWL-S [Martin et al., 20041 is one 

of the first core ontologies explicitly aiming at automatic discovery, automatic 
invocation, automatic composition and interoperation, as well as automatic 
execution of Webxervices. We have inspected OWL-S and have come to the 
conclusion that it is a big step forward with design principles suitable also for our 
purposes. However, OWL-S exhibits shortcomings that stand in conflict with 
our goals of high quality, heavyweight axiomatization, and reference purpose. 
Our Core Ontology of Web Services can be seen as an improvement of OWL-S. 
Along the same lines, previous efforts responded to some of the problems of 
OWL-S. We briefly discuss the two initiatives we are aware of by describing 
their motivation, the parts of OWL-S they focus on, the techniques they use, as 
well as some initial results. 

The first initiative [Narayanan and McIlraith, 20031 is motivated by the need 
of formal semantics to describe, simulate, automatically compose, test and 
verify Web service compositions. It focuses solely on the OWL-S Service- 
Model, which provides all the constructs for specifying composition. The 
authors establish a situation calculus semantics for the main elements in the 
OWL-S ServiceModel (e.g., atomic and composite processes, conditional ef- 
fects and outputs), and then translate it to the operational semantics provided 
by Petri nets. This knowledge representation formalism has a rich theoretical 
and tool support for the various composition tasks. Indeed, the semantics of 
this knowledge representation mechanisms allows reusing an existing simu- 
lation and modelling environment. Further, the authors were able to identify 
more tractable subsets of OWL-S (less expressive but more efficient analysis 
for verification, composition and model checking). 
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The second effort [Ankolekar et al., 20021 also focuses only on the OWL-S 
ServiceModel and proposes a concurrent operational semantics that incorpo- 
rates subtype polymorphism. The motivation for this work is to provide an 
initial reference semantics that would discover any possible ambiguity in the 
developed language. It would also serve for developing techniques for auto- 
mated verification of OWL-S models. Finally, if other Web standards would 
provide a similar semantics, it would be much easier to compare them and to 
understand their strengths and weaknesses. The authors of both efforts mutu- 
ally acknowledge the similarity between the two proposed semantics, except 
some minor details discussed in [Ankolekar et al., 20021. 

Both approaches limit their attention to the OWL-S ServiceModel. From 
a methodological perspective, the approaches provide independent reconstruc- 
tions of OWL-S, while we embed the information represented in the OWL- 
S ServiceModel in the larger context offered by the foundational ontology. 
Therefore we can deduce, e.g., that OWL-S does not address the difference be- 
tween a real-life object (e.g., a book), and its representational counterpart in an 
information system (e.g., an ISBN number), an important ontological distinc- 
tion. Finally, the semantics established by the approaches are not reflected in 
their OWL formalization. In contrast, our ontologies inherit the axiomatization 
from DOLCE and provide further axioms. Besides aiming at increased formal 
axiomatization, it has been our goal to explain the concepts as precisely as pos- 
sible. The analysis of OWL-S in Chapter 5, Section 3, also brings to surface 
several shortcomings of OWL-S. Furthermore, one of the long term benefits of 
having an ontology with reference characteristics is that it allows a comparison 
among other ontologies (a goal also stated in [Ankolekar et al., 20021). 

The actions on OWL-S are continued by the Semantic Web Services Initiative 
Architecture committee (SWS A ) , ~  whose objective is to develop architectural 
and protocol abstractions forming a reference architecture to support Semantic 
Web Service technologies. One of their proposals is the framework discussed 
next: METEOR-S. 

4.2 METEOR-S 
The METEOR-S project at the LSDIS Lab, University of Georgia, aims to 

extend WS* specifications with Semantic Web technologies to achieve greater 
dynamism and s~a l ab i l i t~ .~  More specifically, METEOR-S focuses on adding 
semantics to WSDL and UDDI, on adding semantics to WS-BPEL and on 
a semi-automatic approach for annotating Web services described in WSDL. 
The endeavor is to define and support the complete lifecycle of Semantic Web 
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Services processes. Like with all other approaches, METEOR-S aims at full au- 
tomation of all management tasks, while our approach aims at facilitating some 
management tasks by keeping the modelling efforts minimal. An introduction 
to the parts of the METEOR-S project follows. 

Semantic Annotation of Web Services 

The METEOR-S Web Service Annotation Framework (MWSAF) [Patil 
et al., 20041 is a graphical tool that allows annotating existing Web service 
descriptions with semantic descriptions according to an arbitrary ontology. The 
tool facilitates the parsing of WSDL files and ontologies, enabling the user to 
annotate Web service descriptions semi-automatically by a matching algorithm. 
The matching algorithm works on the XML-Schema types of a WSDL descrip- 
tion and a given domain ontology. Such an approach is very promising also for 
our work because it allows obtaining semantic descriptions semi-automatically 
(cf. Chapter 8, Section 1.2). 

WSDL-S 

WSDL-S [Akkiraju et al., 20051 is an evolutionary and compatible up- 
grade of the existing WSDL descriptions. Semantic descriptions are attached 
to WSDL descriptions whereby the expressiveness of WSDL is augmented with 
semantics. This is done by employing concepts analogous to those in OWL-S, 
while being agnostic to the semantic representation language. The advantage 
of adding semantics to WSDL in such an evolutionary way is multi-fold. First, 
users can, in an upwardly compatible way, describe both the semantics and 
operation level details in WSDL - a language with which the developer com- 
munity is familiar with. Second, by externalizing the semantic domain models, 
WSDL-S takes an agnostic approach to ontology representation languages. This 
allows Web service developers to annotate their Web services with their choice 
of the ontology language (such as UML or OWL). This is significant since the 
ability to reuse existing domain models expressed in modelling languages, such 
as UML, can greatly alleviate the need to separately model semantics. More- 
over, this approach realizes the need for the existence of multiples ontologies, 
either from the same or different domains. Finally, it is relatively easy to update 
the existing tooling around the WSDL specification to accommodate such an 
incremental approach. According to the authors, this work is being provided as 
input for the next version of WSDL that will support semantic representation. 

Abstract Process Creation 

The METEOR-S Web Service Composition Framework (MWSCF) 
[Sivashanmugam et al., 20041 considers the fact that the activity of creat- 
ing Web processes using Web services has been handled mostly at the syntactic 



232 SEMANTIC MANAGEMENT OF MIDDLEWARE 

level. Current composition standards focus on building the processes based on 
the interface description of the participating services. The limitation of such 
a rigid approach is that it does not allow businesses to dynamically change 
partners and services. MWSCF enhances the current Web process composi- 
tion techniques by using "Semantic Process Templates" to capture the semantic 
requirements of the process. The semantic process templates can act as config- 
urable modules for common industry processes maintaining the semantics of 
the participating activities, control flow, intermediate calculations, conditional 
branches and exposing it in an industry accepted interface. The templates are 
instantiated to form executable processes according to the semantics of the ac- 
tivities in the templates. The use of ontologies in template definitions allows 
a much richer description of activity requirements and a more effective way of 
locating services to carry out the activities in the executable Web process. Dur- 
ing the discovery of services, the framework considers not only functionality, 
but also the quality of service of the corresponding activities. The framework 
combines the expressive power of the present Web service composition stan- 
dards and the advantages of the Semantic Web techniques for process template 
definition and Web service discovery. 

Semantic Discovery of Web Services 

The METEOR-S Web Service Discovery Infrastructure (MWSDI) [Venna 
et al., 20051 supports Web service publication and discovery among multi- 
ple registries. This work uses an ontology-based approach to organize reg- 
istries, enabling semantic classification of all Web services based on specific 
domains. Each of these registries supports semantic publication of the Web 
services, which is used during the discovery process. Two algorithms for se- 
mantic publication and one algorithm for semantic discovery of Web services 
have been implemented. According to the authors, this semantic approach will 
significantly improve Web services publication and discovery involving a large 
number of registries. 

Composition of Web Services 

Automatically selecting new services which best fit a specific requirement 
necessitates the quantifying of criteria for selection. In addition, there are 
challenging issues of correctness and optimality. The "Constraint Driven Web 
Service Composition" tool in METEOR-S [Aggarwal et al., 20041 allows pro- 
cess designers to bind Web services to an abstract process, based on business 
and process constraints, and generate an executable process. The approach is 
to reduce much of the service composition problem to a constraint satisfaction 
problem. It uses a multi-phase approach for constraint analysis. 
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4.3 WSMO 
The Web Service Modeling Ontology (WSMO) along with its related efforts 

WSML and WSMX (see below) presents a complete framework for Seman- 
tic Web Services, combining Semantic Web and Web service technologies. 
The Web Service Modeling Framework (WSMF) [Fensel and Bussler, 20021 is 
taken as a starting point, refined and extended by developing a formal ontology 
and language. WSMF consists of four different main elements for describing 
Semantic Web Services: (1) ontologies that provide the terminology used by 
other elements, (2) goals that define the problems that should be solved by Web 
services, (3) Web services descriptions that define various aspects of a Web ser- 
vice and (4) mediators, which bypass interoperability problems. [Roman et al., 
20051 

The Web Service Modeling Language (WSML) provides a formal syntax 
and the semantics for the Web Service Modeling Ontology. WSML is based 
on different logical formalisms, namely, description logics, first-order logic 
and logic programming, which are useful for the modeling of Semantic Web 
Services. WSML consists of a number of variants based on these different 
logical formalisms, namely WSML-Core, WSML-DL, WSML-Flight, WSML- 
Rule and WSML-Full. [de Bruijn et al., 20051 

Finally, The Web Services Execution Environment (WSMX) is an execution 
environment for dynamic discovery, selection, mediation and invocation of 
Semantic Web Services. WSMX is developed as a reference implementation 
of an execution environment for Web services. It manages a repository of 
Web services, ontologies and mediators. According to the authors, WSMX 
can achieve a user's goal by dynamically selecting a matching Web service, 
mediating the data that needs to be communicated to this service and invoking 
it. [Aiken and Zaremba, 20051 

WSMO is no exception in that its goal is the full automation of all man- 
agement tasks. Our approach, in contrast, aims at facilitating only some of 
the typical Web service management tasks by a justifiable amount of semantic 
modelling. 

4.4 IRS 
IRS-I1 (Internet Reasoning Service) is a framework whose main goal is to 

support the publication, location, composition and execution of heterogeneous 
Web services, augmented with semantic descriptions of their functionalities. 
IRS-I1 has three main classes of features, which distinguish it among other 
works on Semantic Web Services. First, it supports one-click publishing of 
stand-alone software: IRS-I1 automatically creates the appropriate wrappers, 
given pointers to the stand-alone code. Second, it explicitly distinguishes be- 
tween tasks (what to do) and methods (how to achieve tasks), and, as a result 
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supports capability-driven service invocation, flexible mappings from services 
to problem specifications and dynamic, knowledge-based service selection. Fi- 
nally, IRS-I1 services are Web service compatible. Standard Web services can 
be trivially published through the IRS-I1 and any IRS-I1 service automatically 
appears as a standard Web service to other Web service infrastructures [Motta 
et al., 20031. Like with all other approaches, IRS aims at full automation of all 
management tasks. Our approach of semantic management of Web services, 
however, aims at facilitating some management tasks by keeping the modelling 
efforts minimal. 

4.5 KDSWS 
The Knowledge-based Dynamic Semantic Web Services (KDSWS) frame- 

work presents an agent-based approach to managing the brokering of Semantic 
Web Services for use within a virtual organization. The framework provides 
a formal model-based approach to implementing Web services that defines the 
modelling, specification, design, implementation and deployment of systems 
composed of Semantic Web Services. The goal of the framework is to sup- 
port the automatic discovery, composition, execution and management of Web 
services for the virtual organization in a protocol-independent manner. This 
research is still at an abstract level and a proof of concept implementation of 
the framework is planned to demonstrate and mature the facets of the research. 
[Howard and Kerschberg, 20041 KDSWS' goal is the full automation of all 
Web service management tasks, such as all other approaches. Our approach, in 
contrast, aims at facilitating only some of the management tasks by a justifiable 
amount of semantic modelling. 

4.6 Other Approaches 
There are several other approaches (as opposed to complete frameworks) that 

try to exploit semantic technologies in existing Web services middleware. Two 
approaches try to incorporate semantic technology in UDDI, for instance. The 
first, [Voskob, 20041, stems from the OASIS'O itself and proposes a taxonomy 
support for semantics in UDDI registries. The primary aim is to enable a better 
discovery and matchmaking by leveraging the ontological descriptions. The 
second tries to achieve similar goals by incorporating OWL-S profiles into the 
UDDI registry [Paolucci et al., 2002al. 

[Mandell and McIlraith, 20031 take into account that most semantic efforts 
have been disconnected from the emerging WS* standards. Hence, they propose 
a "bottom-up" approach of enriching WS-BPEL by semantics. 

I0http:  //www. oasis-open. org 
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Furthermore, there are semantic sewice matchmakers that compare a given 
service requirement description to several service offering descriptions and 
choose the best fitting one. Several service matchmaking engines have been 
prototypically implemented, e.g., [Li and Horrocks, 2003,Paolucci et al., 2002c, 
Noia et al., 20031. Even the sophisticated task of automated policy matching 
is currently approached in the field of Semantic Web Services. Corresponding 
policy engines act on semantic policy descriptions and try to match them. There 
are several prototypes available, e.g., [Tonti et al., 2003, Kagal et al., 2003, 
Agarwal and Sprick, 2004,Uszok et al., 20041. It remains to be seen whether 
the problems related to semantic interpretations of documents can be solved in 
the full generality required for real-life service and policy matching. Instead, 
we want to provide developers with some tool support in browsing, selecting 
and handling services and policies at development time. Hence, we propose to 
support the developers in their management tasks and not to replace them. 

5. Miscellaneous 

The final section groups related approaches that cannot be classified in the 
aforementioned categories. We discuss software reuse systems (Section 5. I), 
the DL IDL approach (Section 5.2), Microsoft's System Dejinition Model (Sec- 
tion 5.3), the integration of software specijications (Section 5.4), as well as 
ontologies comparable to our work (Section 5.5). 

5.1 Software Reuse Systems 

Classical software reuse systems are comparable to our work in that they 
also need to describe software modules appropriately for efficient and precise 
retrieval. Techniques, such as the faceted classification [Diaz, 19911, concen- 
trate on representing the features of the software providers. Techniques, such as 
the analogical software reuse [Massonet and van Lamsweerde, 19971, share a 
representation of modules that is based on goals achieved by the software, roles 
and conditions. [Zaremski and Wing, 19971 describe a specification language 
and matching mechanism for software modules. They allow for multiple de- 
grees of matching, but consider only syntactic information. UPML, the Unified 
Problem-solving Method Development Language [Fensel et al., 19991, has 
been developed to describe and implement intelligent broker architectures and 
components to facilitate semi-automatic reuse and adaptation. It is a frame- 
work for developing knowledge-intensive reasoning systems based on libraries 
of generic problem-solving components that are represented by inputs, outputs, 
preconditions and effects of tasks. However, none of these approaches focuses 
on the aspects that have to be described for management purposes. Most of 
them are also not based on logics, disallowing reasoning and querying. 
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5.2 DL IDL 
[Borgida and Devanbu, 19991 show how description logics can be used to 

augment CORBA IDL specifications so that the compatibility testing of IDL 
specifications, local consistency checking, and more thorough treatment of ex- 
ceptions is possible. However, this approach just augments the syntactic part of 
an API's description. That means DL IDL does not allow to model the meaning 
or behavior of methods and parameters, such as our Core Software Ontology. 
Given such information, our approach allows more powerful searches over a 
large unfamiliar API, for instance. However, DL IDL could be extended in this 
direction. 

5.3 Microsoft SDM 
The Dynamic Systems Initiative (DSI) is an industry effort led by Microsoft to 

enhance the Windows platform and to deliver a coordinated set of solutions that 
simplify and automate how businesses design, deploy and operate distributed 
systems. The System Definition Model (SDM)" is a key technology component 
of the DSI product roadmap that provides a common language (called meta- 
model) used to create models that capture the organizational knowledge relevant 
to entire distributed systems. 

SDM takes a similar approach to ours because it tries to include heteroge- 
neous information (in this case about software, hardware and network) in a 
unified system model. SDM targets design, deployment and operation. The 
first actual software tool implementing this strategy is the Visual Studio de- 
velopment environment. SDM illustrates the trend of representing different 
system aspects in a common framework, although it seems to rely solely on 
XML without any underlying logic-based semantics. 

5.4 Integration of Software Specifications 
[Grosse-Rhode, 20041 addresses the model-based development of software 

systems, which uses different views on a system specified in appropriate mod- 
elling languages and techniques. These range from formal specification tech- 
niques, such as process calculi, Petri nets and rule-based formalisms to semi- 
formal software modelling languages, such as those in the UML family. Be- 
cause of the unavoidable heterogeneity of the models, a semantic integration 
is required to establish the correspondences of the models and to allow the 
checking of the relative consistency. 

The proposed integration approach is based on a common semantic domain 
of abstract systems, their composition and development. Its applicability is 
shown through semantic interpretations and compositional comparisons of dif- 



Related Work 237 

ferent specification approaches. Algebraic reference models are used to inte- 
grate the different specification formalisms. Their operational semantics can be 
faithfully rephrased in terms of algebraic transformation systems. This com- 
mon semantic interpretation yields the possibility of formal comparisons of 
heterogeneous specifications given in different languages even with different 
underlying paradigms. 

The initial problem that is addressed by this work is very similar to ours. 
Grosse-Rhode tries to harmonize the different views of software development, 
such as UML class diagrams or Petri nets, in a common model. However, 
our focus is not on development, but rather on management. In addition, we 
concentrate on typical middleware systems with their descriptor files. We use an 
ontology with logic-based semantics as opposed to the algebraic approach. We 
do so because we exploit the reasoning capabilities of corresponding inference 
engines to support developers and administrators in their daily tasks. 

5.5 Other Ontologies 
There have been several efforts to define ontologies that overlap with the 

ideas presented in Chapter 7. For example, the COHSE Java ontology12 offers 
a formal schema for turning a Java software project into an ontology. The open 
source project ~ n t r o s ~ e c t o r ' ~  is a back-end to the popular GNU compiler col- 
lection g ~ ~ , ' 4  which generates an RDF defined ontology out of gcc compiled 
source code. Thus, it works with all languages supported by gcc, for example, 
C, C++, Java, Fortran and others. [Welty, 19951 offers a more profound and 
sound ontology-based foundation to these levels of detail, analyzing the con- 
structs available when programming. All these works provide support for using 
ontologies in the area of software development but on a much finer grained level 
than the work presented here. 

An example of a higher level software component ontology in use is pro- 
vided by [Ankolekar et al., 20031. Instead of the technological management 
of software components as provided by the middleware layer and described 
herein, her work focuses on the social and project-level management of open 
source software projects. As we can see by these numerous examples, the use 
of Semantic Web technologies in the area of software engineering is gaining 
momentum. A task force within the Semantic Web Best Practises group has 
been formed in order to organize and bring together these various efforts.15 

I2http: //cohse . semanticweb. org/sof tware . html 
I3http: //introspector. sourceforge .net 
I4http: //gcc . gnu. org 
I5http: //www . w3. org/2001/sw/BestPractices/SE/ 



Chapter 12 

CONCLUSION & OUTLOOK 

The contribution of this work is to solve some of the problems of the Middle- 
ware community by applying the technologies of the Semantic Web community. 
More specifically, the book positively answers its Cardinal Question: Can on- 
tologies be used to facilitate the development and management of middleware- 
based applications for developers and administrators? In this final chapter, we 
provide a summary of the book in Section 1. In essence, we have subdivided 
the Cardinal Question into three Main Questions. In each part of the document 
we have been concerned with answering one of the Main Questions. Further- 
more, we detail the contributions separately in Section 2. First, our approach 
of semantic management allows the automation of some typical management 
tasks prevailing in application servers and Web services middleware. Second, 
we explicitly build our approach on the observation that there is a trade-off 
between management and modelling efforts. Third, we provide a set of ontolo- 
gies which are well-designed, avoiding the typical shortcomings of commonly 
built ontologies. Open issues and possible directions for future research are 
discussed in Section 3. 

1. Summary 
We have subdivided the Cardinal Question into the three Main Questions. 

Below, we give a brief summary of how the three Main Questions have been 
answered. 

I How tojnd a good trade-off between modelling and management efforts? 
In Part I, we have claimed that the full breadth of management requires an 
understanding of the world that is too deep to be modelled explicitly. There 
is a trade-off between expending efforts for management and expending 
efforts for semantic modelling. The trade-off point was approached by 
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identifying a set of use cases. Each of them responded to the questions 
who uses the semantic descriptions?, what are they used for? and when 
do they occur? The use cases also yielded a set of modelling requirements 
for choosing which aspects our ontology should formalize. 

I1 How to build a suitable management ontology? The modelling require- 
ments that were derived in Part I serve as an input to Part 11, where we 
have analyzed whether existing ontologies can be reused and adapted for 
our purposes. In order to answer the question can an existing ontology 
be reused for our purposes?, we have had a closer look at potential core 
ontologies for the description of Web services and software components. 
The conclusion was that existing ontologies exhibit severe problems that 
conflict with our goals of having a high-quality management ontology. 
Hence, we have decided to model an appropriate management ontology 
anew. Appropriateness required answering the questions: how to ensure 
high quality?, and how to decrease modelling efforts and enable reuse? We 
have achieved these goals by: ( i )  axiomatizing the intended models of our 
universe of discourse as closely as possible and (ii) capturing the idiosyn- 
cracies of components and services and by being platform-independent at 
the same time. The resulting management ontology can be downloaded at 
http://cos.ontoware.org. 

I11 How to realize semantic management of middleware? It was the purpose 
of Part I11 to elaborate on all issues of realization. The ontology is merely 
a passive object which has to be applied in an inference engine in order to 
realize all the querying and reasoning tasks introduced in our use cases. The 
first question that arose was: what is a suitable target platform? We have 
chosen an application server because many use cases can be realized. The 
next question, who provides semantic descriptions?, addressed the problem 
that the number of manually provided descriptions must be kept as small 
as possible because developers and administrators do not want to expend 
additional efforts. Hence, we have elicited further options on how to arrive 
at semantic descriptions of components and services. We have continued 
by designing an ontology-based application server in a piecemeal manner. 
In order to respond to how to implement semantic management?, we have 
reused an existing application server and have leveraged the wealth of tools 
provided by an existing ontology tool suite. Another significant body of 
work elaborated on the steps necessary to reuse and apply our management 
ontology in this specific implementation (how to reuse the ontology?). Our 
prototypical implementation, the KAON SERVER, can be obtained from 
http : //kaon . semanticweb. org/server. 
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2. Contributions 
The book proposes the semantic management of middleware-based applica- 

tions to support the developer and administrator. That means using an ontol- 
ogy to make the underlying conceptual model of middleware elements explicit 
by formal logic-based semantics. Therefore, semantic descriptions of such 
middleware-elements may be queried, may foresight required actions or may 
be checked to avoid inconsistent system configurations. The contributions can 
be factorized as follows: 

State-of-the-art Ontology Engineering Commonly and often naively built 
ontologies suffer from conceptual ambiguity, poor axiomatization, loose 
design and narrow scope. They are often reduced to simple taxonomies and 
leave open many interpretations of their concepts and associations. We have 
responded to such shortcomings by adopting the advanced theory of Guarino 
and have introduced a new classification of ontologies in order to explain 
their different uses. We have carefully chosen an appropriate foundational 
ontology on the basis of specific ontological choices. The foundational on- 
tology was used as a modelling basis and extended by highly axiomatized 
core ontologies. 

We have shown how to develop and use the ontological foundations of this 
work in a concrete software environment. This was done in a way that 
the usage of the resulting middleware infrastructure seems amenable to a 
sophisticated software developer even though the development of a complex 
foundational ontology may have to be left to some few specialists. 

Finally, the extensive axiomatization of the management ontology and, thus, 
its reference characteristic, makes evident that there are only minor differ- 
ences between modelling software components and modelling Web services. 

Reduction of Management Efforts Another novelty of our approach is to use, 
adapt, extend and apply semantic technology to automate some of the man- 
agement tasks of application server and Web services middleware. Such 
middleware solutions are very complex software products that are hard to 
tame because of the intricacies of building distributed systems. So far, their 
functionalities have mostly been developed and managed with the help of 
administration tools and corresponding configuration files, recently in XML. 
Though this constitutes a very flexible way of developing and administrat- 
ing a distributed application, the disadvantage is that the conceptual model 
underlying the different configurations is only implicit. Hence, its bits and 
pieces are difficult to retrieve, survey, check for validity and maintain. To 
remedy such problems, we contribute an ontology-based approach to sup- 
port the development and administration of middleware-based applications. 
The ontology captures properties of, relationships between and behaviors 
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of the components and services that are required for development and ad- 
ministration purposes. The ontology is an explicit conceptual model with 
formal logic-based semantics. Therefore, its descriptions may be queried 
and reasoned with. Thus, the ontology-based approach retains the original 
flexibility in configuring and running the middleware, but it adds new capa- 
bilities for the developer and user of the system. The proposed scheme is 
prototypically implemented in an open-source application server. 

Consideration of Modelling Efforts Our approach is one of the first that ac- 
knowledges and explicitly builds on the observation that the use of declar- 
ative specifications, such as those in Web services, or formal declarative 
specifications, such as in Semantic Web Services, comes with economic 
modelling costs that need to be justified by savings in other places. 

This lets us presume that formal specifications with the objective of fully 
automatic Web service composition and orchestration remain a valid re- 
search topic, but one that will find its applications in niches rather than in 
wide-spread adoption by software developers. 

3. Open Issues 
Every solution raises new problems, and our work is no exception here. 

First, the scope of this work could be extended to other middleware platforms. 
Second, its prototypical implementation could be extended to a full-fledged 
solution. Third, further research is required for a concise comparison of man- 
agement efforts vs. reasoning capabilities. Fourth, the assessment of the benefits 
could be extended to a comprehensive economic analysis. Last but not least, 
the realization of semantic managements will hopefully culminate in industry 
adoption. 

Scope Although the name of the book is "semantic management of middle- 
ware" we have limited its focus on application servers and Web services. 
Consequently, the solution we provide concentrates on the semantic man- 
agement of software components and Web services. Even within the limited 
scope we have only scratched the surface with the identified use cases. All of 
them are subject to be discussed in much more detail. Some of them might 
even require separate treatment. In addition, there are probably dozens of 
other use cases where semantic technology can be fruitfully applied. 

The diversity of current middleware products gives rise to other solutions 
and middleware elements. We have already considered other platforms, as 
well, which could benefit from semantic technology, e.g., software IDE's or 
Web service composition engines, let alone the more recent developments 
in the areas of grid or peer-to-peer computing [Haase et al., 20041. 
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Implementation The implementation of the proposed design, the KAON 
SERVER, is a prototype, which realizes only a subset of the use cases. 
This is not surprising, because the breadth and depth of the presented use 
cases are large and each use case might be extended to a whole book. It 
is therefore required to expend much more manpower into implementation 
details. 

Also, the semantic management of Web services necessitates many more 
details than presented in this book. Although the problems are similar to the 
semantic management of software components, the situation here is more 
complex due to the mere fact of distribution, which entails network delays, 
reliability, trust or additional security issues. Considering all these issues, 
easily fills additional books. Furthermore, we have only prototypically 
realized a subset of the required design elements for semantic management 
of Web services, viz., the Web service connector and the metadata collector. 

Management Efforts vs. Reasoning Capabilities The KAON toolsuite is 
used as the semantic technology in our prototype because its API offers 
a comprehensive set of features in order to control the application server 
with an ontology. However, it must be said that KAON's reasoning capabil- 
ities are quite limited. In essence, there is not much more than subsumption, 
transitivity and symmetry. The use cases require a whole bandwidth of rea- 
soning capabilities: one requires subsumption reasoning; another uses the 
reified satisfaction of Descriptions & Situations; others require browsing 
and querying; and so forth. As a consequence, some use cases cannot be 
realized with KAON or require management efforts that could have been 
saved with more powerful reasoning. Further research is necessary for a 
concise comparison of management efforts vs. reasoning capabilities. For 
example, the currently developed successor of KAON, viz., KAON~, '  is 
based on a more expressive description logic, and even allows the definition 
of rules. 

Economic Analysis of Semantic Management Our assessment of the bene- 
fits of semantic management is based on a qualitative comparison between 
modelling and management efforts with and without semantic management. 
However, a full assessment will need to include further crucial factors (cf. 
[Wolff et al., 20051 for an initial, extended assessment): (i) the application 
requirements, such as the number and size of applications, the frequency of 
changes, or the required service level. (ii) the organizational factors, e.g., 
the number of developers and administrators, their skills, their turnover, the 
learning curves for using deployment descriptors or for using semantic tech- 

'http: //kaon2. semanticweb. org 
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nology, etc. (iii) the service characteristics, i.e., the number of Web services, 
as well as their diversity and complexity. Future research should, therefore, 
strive for a comprehensive economic analysis of the semantic management 
approach. 

Industry Adoption The ideal platform for bringing this research more towards 
industry is the JBoss application server, of course. This is not only because 
our prototype builds on JBoss, but also because JBoss is open-source and, 
thus, leaves more room for experiments. 

The success of such an approach heavily depends on usability and industry 
adoption by software developers and administrators, who will not be very 
willing to familiarize with a large new paradigm when they are just getting 
used to deployment and WS* descriptors. The working with ontologies 
must be as seamless and intuitive as ever possible. Hence, additional efforts 
have to be invested to adopt the administration console, which is merely an 
ontology browser at the moment. It should hide the ontology idiosyncracies 
and adapt to the typical administrator to be more intuitive. 
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