

SEMANTIC
MANAGEMENT OF

MIDDLEWARE

SEMANTIC WEB AND BEYOND
Computing for Human Experience

Series Editors:

Ramesh Jain Amit Sheth
University of California, Irvine University of Georgia
http://jain.faculty.gatech.edu/ http://lsdis.cs.uga.edu/-amit

As computing becomes ubiquitous and pervasive, computing is increasingly becoming
an extension of human, modifying or enhancing human experience. Today's car reacts to
human perception of danger with a series of computers participating in how to handle the
vehicle for human command and environmental conditions. Proliferating sensors help
with observations, decision making as well as sensory modifications. The emergent
semantic web will lead to machine understanding of data and help exploit
heterogeneous, multi-source digital media. Emerging applications in situation
monitoring and entertainment applications are resulting in development of experiential
environments.

SEMANTIC WEB AND BEYOND
Computing for Human Experience

addresses the following goals:

brings together forward looking research and technology that will shape our
world more intimately than ever before as computing becomes an extension of
human experience;

covers all aspects of computing that is very closely tied to human perception,
understanding and experience;

brings together computing that deal with semantics, perception and experience;

serves as the platform for exchange of both practical technologies and far
reaching research.

Additional information about this series can be obtained from
http://www.springer.com

SEMANTIC
MANAGEMENT OF

MIDDLEWARE

Daniel Oberle
University of Karlsruhe, Germany

Q - Springer

Daniel Oberle

University of Karlsruhe

Institute of Applied Informatics and

Formal Descriptions Methods

D-76128 Karlsruhe

Germany

Library of Congress Control Number: 2005908104

Semantic Management of Middleware

by Daniel Oberle

ISBN-10: 0-387-0-387-27630-0 e-ISBN-10: 0-387-0-387-27631-9

ISBN-13: 978-0-387-27630-4 e-ISBN-13: 978-0-387-27631-1

Printed on acid-free paper.

Dissertation, genehmigt von der Fakultät für Wirtschaftswissenschaften der

Universität Fridericiana zu Karlsruhe, 2005. Referent: Prof. Dr. Rudi Studer,
Korreferenten: Prof. Dr. Bruno Neibecker, Prof. Dr. Steffen Staab

Cover art by Daniel Oberle, showing the architecture of the ontology-based

application server, from another perspective. The green object is a common

symbol for an ontology.

© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or

in part without the written permission of the publisher (Springer

Science+Business Media, Inc., 233 Spring Street, New York, NY 10013,

USA), except for brief excerpts in connection with reviews or scholarly

analysis. Use in connection with any form of information storage and

retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and

similar terms, even if the are not identified as such, is not to be taken as

an expression of opinion as to whether or not they are subject to

proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springeronline.com

Dedicated to ...

... the Supervisors

Steffen Staab
Andreas Eberhart

Pascal Hitzler
Rudi Studer

... the Reviewers

Ed Curry
Robert Delaney
Aldo Gangemi

Peter Haase
Stefan Tai

Denny Vrandecic
Clare Waibel

... the Colleagues @ Semantic Karlsruhe

Andreas Abeckel; Sudhir Agarwal, Stephan Bloehdorn, Saartje Brockmans,
Philipp Cimiano, Christian Drumm, Marc Ehrig, Stephan Grimm, Siegfried

Handschuh, Jens Hartmann, Andreas Hotho, StefSen Lampartel; Jens Lemcke,
Alexander Madche, Boris Motik, Kioumars Namiri, Gisela Schillingel; Lars

Schmidt-Thieme, Christoph Schmitz, Ljiljana & Nenad Stojanovic, Gerd
Stumme, York Sure, Julien Tune, Bernhard Tausch, Christoph Tempich, Max

Volkel, Johanna Volkel; Raphael Volz, Susanne Wintel; Valentin Zacharias

... the Colleagues @ World

Sean Bechhofel; Bettina Berendt, Jorge Gonzalez, Nicola Guarino, Frank van
Harmelen, Ian Horrocks, Hans-Arno Jacobsen, Holger Knublauch, Deborah

McGuinness, Sheila Mcllraith, Peter Mika, Christof Momm, Doug Lea, Jeff
Pan, Helena Sojia Pinto, Debbie Richards, Marta Sabou, Jorge Santos, Rick

Schantz, Luc Schneidel; Swaminathan Sivasubramanian, Heiner
Stuckenschmidt, Phil Tetlow, Peter Spyns, Mike Uschold, Werner Vogels,

Frank Wolff

... and last but not least to my family &friends!

Contents

List of Figures
List of Tables
Preface
Foreword
Acknowledgments

Part I Fundamentals

1. INTRODUCTlON

1 Motivation

2 Research Questions

3 Contributions

2. MIDDLEWARE

1 Middleware for Distributed Application Development

2 Middleware for Enterprise Application Integration

3 Middleware for B2B Application Integration
3.1 Application Servers
3.2 Web Services

4 Summary

3. ONTOLOGIES

1 Definition
1.1 What is a Conceptualization?
1.2 What is an Ontology?
1.3 A Suitable Representation Formalism

2 Classification

xiii
xv

xvii
xxi
xxv

viii SEMANTIC MANAGEMENT OF MIDDLEWARE

2.1 Classification according to Purpose
2.2 Classification according to Expressiveness
2.3 Classification according to Specificity

3 The Role of Foundational Ontologies

4 Ontological Choices
4.1 Descriptive vs. Revisionary
4.2 Multiplicative vs. Reductionist
4.3 Possibilism vs. Actualism
4.4 Endurantism vs. Perdurantism
4.5 Extrinsic Properties

5 Summary

4. TOWARDS SEMANTIC MANAGEMENT
1 Scenarios

I. 1 An Application Server for the Semantic Web
1.2 Web Services in SmartWeb

2 Use Cases
2.1 Application Servers
2.2 Web Services

3 Summary

Part I1 Design of a Management Ontology

ANALYSIS OF EXISTING ONTOLOGIES

1 OWL-S

2 Initial Ontology of Software Components

3 Problematic Aspects
3.1 Conceptual Ambiguity
3.2 Poor Axiomatization
3.3 Loose Design
3.4 Narrow Scope

4 Summary

6. THE APPROPRIATE FOUNDATIONAL ONTOLOGY

1 Requirements for Ontological Choices

2 Alternatives
2.1 BFO
2.2 DOLCE
2.3 OCHRE

Contents ix

2.4 OpenCyc
2.5 SUMO

3 Summary

7. AN ONTOLOGICAL FORMALIZATION OF SOFTWARE
COMPONENTS AND WEB SERVICES
1 Modelling Basis

1.1 DOLCE
1.2 Descriptions & Situations
1.3 Ontology of Plans
1.4 Ontology of Information Objects

2 Core Software Ontology
2.1 Software vs. Data
2.2 API Description
2.3 Semantic API Description
2.4 Workflow Information
2.5 Access Rights and Policies

3 Core Ontology of Software Components
3.1 Formalization of the Term "Software Component"
3.2 Libraries and Licenses
3.3 Component Profiles and Taxonomies
3.4 Example

4 Core Ontology of Web Services
4.1 Formalization of the term "Web service"
4.2 Service Profiles and Taxonomies
4.3 Example

5 Proof of Concept
5.1 Meeting the Modelling Requirements
5.2 Higher Quality
5.3 Enabling Reuse

6 Summary

Part I11 Realization of Semantic Management

8. DESIGN OF AN ONTOLOGY-BASED APPLICATION SERVER 149

1 General Design Issues 150
1.1 Possible Platforms 150
1.2 Obtaining Semantic Descriptions 152
1.3 How to Integrate the Inference Engine? 154

x SEMANTIC MANAGEMENT OF MIDDLEWARE

2 Semantic Management of Software Components
2.1 Requirements
2.2 The Microkernel Design Pattern
2.3 Integration of an Inference Engine
2.4 Architecture

3 Semantic Management of Web Services

4 Summary

9. IMPLEMENTATION

1 The JBOSS' Application Server
2 The KAON Tool Suite
3 KAONSERVER

3.1 Server Core
3.2 Connectors
3.3 Interceptors
3.4 Functional Components
3.5 Management Console

4 Example
4.1 Modelling the Ontology
4.2 Definition of Rules
4.3 Setting up the Portal

5 Summary

10. APPLYING THE MANAGEMENT ONTOLOGY

1 From Core to Domain
1.1 MBeans
1.2 Profiles

2 From Reference to Application

3 From Heavyweight to Lightweight
3.1 The KAON Language
3.2 Adaptation of Definitions and Axioms

4 Assessment
4.1 Application Server Use Cases
4.2 Web Services Use Cases

5 Summary

Contents

Part IV Finale

1 1. RELATED WORK
1 Enterprise Application Management

1.1 Application Management Systems
1.2 Application Management Schemas

2 Model-Driven Architectures
3 Web Services

4 Semantic Web Services
4.1 OWL-S
4.2 METEOR-S
4.3 WSMO
4.4 IRS
4.5 KDSWS
4.6 Other Approaches

5 Miscellaneous
5.1 Software Reuse Systems
5.2 DL IDL
5.3 Microsoft SDM
5.4 Integration of Software Specifications
5.5 Other Ontologies

12. CONCLUSION & OUTLOOK
1 Summary

2 Contributions

3 Open Issues

Appendices
A Taxonomies

References

Index

List of Figures

Types of middleware and historical overview.
J2EE API's divided into layers.
Example of indirect permission.
Internal vs. external middleware.
Example: Software components and their dependencies.
Intended models vs. models of the ontology.
Example for the equivalence relation A.
Classification of ontologies.
Foundational ontologies and intended models.
Classification of foundational ontologies.
Working hypothesis.
Static and dynamic aspects of the Semantic Web.
Semantic Web example.
Information flow in the research and academia example.
Simplified SmartWeb Architecture.
The goal of Part I1 is to design a management ontology.
The OWL-S Service ontology module as UML class diagram. 82
OWL-S and the initial ontology of software components. 84
The representation of attribute binding in OWL-S. 90
BFO Taxonomy. 99
DOLCE Taxonomy. 100
OCHRE Taxonomy. 102
OpenCyc Taxonomy. 104
SUMO Taxonomy. 105
Overview of the management ontology. 108

SEMANTIC MANAGEMENT OF MIDDLEWARE

Sketch of DOLCE.
The Descriptions & Situations ontology module.
The Ontology of Plans.
The Ontology of Information Objects.
The classification of software and data.
Semantic API description.
The Policy Description.
UML diagram of the software component example.
UML diagram of the Web services example.
Solution to the attribute binding problem.
Wider scope through the Ontology of Information Objects.
The Reverse Engineering Approach.
The Model-Driven Deployment Approach.
The Ontology Run Time Approach.
Architecture of the ontology-based application server.
JMX Architecture.
Basic architecture of JBoss.
KAON tool suite overview.
KAON 01-Modeller screenshot.
Mapping from design to implementation elements.
KAON 01-Modeller as management console.
An instance of KAON SERVER.
Sequence diagram - OilEd with KAON SERVER.
Sequence diagram - OntoEdit with KAON SERVER.
Reuse of the management ontology in the KAON SERVER.
CIM for J2EE Application Servers.
DOLCE.
Descriptions & Situations.
Ontology of Plans.
Ontology of Information Objects.
Core Software Ontology.
Core Ontology of Software Components.
Core Ontology of Web Services.
KAON SERVER Ontology.

List of Tables

Dependencies between requirements and ontology modules. 86
Foundational ontologies and their ontological choices. 106
Foundational ontologies and their extrinsic properties. 106
Meeting the modelling requirements for software components. 141
Meeting the modelling requirements for Web services. 141
Dependencies between requirements and design elements. 166
Dependencies between use cases and design elements. 169
WSDL mapping. 180
WS-BPEL mapping. 181
WS-Policy mapping. 18 1
Definitions kept or removed from the management ontology. 197
Axioms kept or removed from the management ontology. 198
Effort comparison for the Library Dependencies and
Versioning and Licensing use cases. 212

Effort comparison for the Capability Descriptions use case. 213
Effort comparison for the Component ClassiJication and
Discovery and Semantics of Parameters use cases. 213

Effort comparison for the Automatic Generation of Web
Service Descriptions use cases. 214
Effort comparison for the Access Rights use case. 214
Effort comparison for the Exception Handling use case. 214

Effort comparison for the Transactional Settings and
Secure Communication use cases. 215
Effort comparison for the Policy Handling and Relating
Communication Parameters use cases. 216

xvi SEMANTIC MANAGEMENT OF MIDDLEWARE

10.1 1 Effort comparison for the Detecting Loops in Interor-
ganizational Workjlows use case. 216

10.12 Effort comparison for the Monitoring of Changes use case. 217
10.13 Effort comparison for the Aggregating Service Informa-

tion use case. 217
10.14 Effort comparison for the Quality of Service use case. 217

Preface

We have termed this series "Semantic Web and beyond: computing for hu-
man experience." Ramesh Jain (co-editor of this series) and I believe that
semantics is going to be far more pervasive than portrayed by the current vision
of the Semantic Web. Its role and values will certainly not be limited to the
traditional Web. Semantics will also be one of the important components of
a continuum leading to perception and experience, albeit one that will mature
earlier in computational context. We also believe that computation, supported
by techniques and technologies that deal with perception, semantics, and expe-
riences, will improve and benefit human experience. Such a computation will
have a far broader impact than the traditional drivers of information technol-
ogy, such as improving efficiency, lowering cost, or productivity gains. In this
context, we expect that this series intends to offer additional books covering
topics in perception, semantics, and experiential computing as they relate to
improving human experience involving interactions with computing devices
and environments. Our series intends to offer research monographs, books for
professional audiences, as well as text books for advance graduate courses.

This premier book in our series by Daniel Oberle is a good example of
what we hope to cover in this series. It discusses the role of semantics in
middleware - arguable the most important segment of the enterprise software
market. This work demonstrates that semantics and the semantic (and Semantic
Web) technologies have pervasive applications and uses. It is also an excellent
training companion for active practitioners seeking to incorporate advanced and
leading edge ontology-based approaches and technologies. It is a necessary
preparation manual for researchers in distributed computing who see semantics
as an important enabler for the next generation.

Middleware systems are complex. They need to integrate and manage mul-
tiple heterogeneous software systems. Just as semantics has been recognized
as a key enabler of heterogeneous information integration, can semantics be
a key enabler in integrating heterogeneous software systems? Daniel believes

xviii SEMANTIC MANAGEMENT OF MIDDLEWARE

that is indeed the case, and he goes on to provide a detailed road map on how
semantics and Semantic Web technologies can play a significant role in cre-
ating a middleware system and their use in managing heterogeneous software
systems.

The first step in the road map is modelling which centers around using on-
tologies for specifying semantic models. This leads to the development of a
semantic model for software components and Web services. We are introduced
to the basics of middleware technology where technologies and design patterns
from the past, such as message-oriented middleware or object monitors, help
readers who are not familiar with the area to get the necessary background
information. The discussion on ontologies achieves the same.

The subsequent part of this book offers a detailed discussion on the different
ontology frameworks which can be used as a modelling basis. The requirements
for the ontology are well laid out and each ontology framework is analyzed with
respect to the requirements. DOLCE is chosen since it meets most of the re-
quirements. The discussion on the semantic modelling of software systems is
particularly interesting to read. The author addresses the different modelling is-
sues at different phases of software component design. The modelling captures
the intricate details and differences between fundamental concepts, such as data
and software, and continues with component profiles, policies, and many more
aspects. The modelling also captures the API of components and proposes a
technique to discover dependent and conflicting libraries. Also presented is a
model to capture workflows. A discussion on how such a modelling can meet
the requirements and the advantages of using such an approach are presented
in detail.

The next part provides a technical look at the different solutions. This in-
cludes discussing each aspect of the middleware system and the techniques to
realize them as actual systems. The requirements of such a semantic middle-
ware are presented and the system design is discussed with that central per-
spective. The system architecture along its different constituting components
are discussed in detail. The application and reuse of the proposed ontology
in the middleware system is also presented. The book ends with relating this
approach to application management, Semantic Web Services and MDA.

Potentially, the most lasting engineering progress in this book, in my per-
sonal view, is that of taking semantics to the application server level. I foresee
an emergence of Semantic Aware Networking, in which semantics not only fa-
cilitates network functions but significantly enhances its capability by pushing
more functions. With the industry already taking initial steps in this direction,
such as in CISCO's Application Oriented Networking products, the next step is
quite likely the interplay between routers and application servers with semantics
providing a bridge.

PREFACE xix

While there is plenty of work related to semantics of information and even
Web services, this effort stands out in its attention to modelling the semantics of
software components. In this context, it is a unique offering that goes beyond
the mainstream Semantic Web research, while demonstrating a detailed and
pervasive use of semantics in larger software systems context. This series will
endeavor to offer more such books and for wider audiences.

Amit P. Sheth
Director, Large Scale Distributed Information Systems lab

Professor, Computer Science Department, University of Georgia
CTO and Cofounder, Semagix, Inc.

Athens, Georgia,
U.S.A.

Foreword

Which topic in computer science has been attracting researchers and de-
velopers from artijicial intelligence, business process modelling, conceptual
modelling, databases, distributed systems, information systems, programming
systems, security, sofhvare engineering, Web services and Web systems and
engineering (and probably many others whom I forgot to mention here)? It
is the specification, development and management of component- and service-
oriented architectures (SOAs).

The topic has become important to all of them. While the development of
individual software systems is reasonably well understood and reasonably well-
established practice (even when thousands of issues of such systems are and
will have to be dealt with in more detail), the specification, development and
maintenance of distributed software systems has in generalnot been understood
to an extent that let their stakeholders gain the intended economic network ben-
efits. On the upside, organizations that establish networking of their numerous
distributed systems with the ones of other organizations may save costs, gain
new customers or increase customer satisfaction. On the downside, if each mi-
nor change or minor disruption in one software system leads to a trickle down
effect that results in expensive reprogramming of another system, all the po-
tential positive network effects are overshadowed by the costs for joining and
remaining in the network.

As the spectrum of interests indicates, the solution to this dilemma may
require a multi-faceted approach. This book by Daniel Oberle significantly
contributes towards this objective. Hence, the methods he proposes, revises and
extends contribute to the plentiful, seminal research of several communities. I
will name the ones that are most immediately affected, though I strongly believe
that all of the above cited interest groups may benefit from building on his
contribution:

xxii SEMANTIC MANAGEMENT OF MIDDLEWARE

Distributed Systems: Current middleware systems, such as application servers,
are complex beasts that are very hard to tame because of the intricacies of
distributed interactions. Hence, it has been a long-established practice to
factorize configuration aspects of distributed interactions into correspond-
ing declarative description files and - more recently - into XML files that
follow the specification given by the various Web service standards.

Unfortunately, the semantics of these files is either given by the code of the
concrete middleware system or - probably worse -by thousands of pages
of specification documents consisting of raw textual explanations. We all
know what went wrong with compilers in the 1960ies when programming
language specifications were still at that stage.

Daniel here builds a rigorous approach towards giving the declarative de-
scriptions of software components/Web services a well-defined meaning by
defining ontological foundations and by showing how such foundations may
be realized in practical, up-and-running systems.

Artificial Intelligence - Ontologies: Though all software developers use pro-
gramming languages, only few specialists are actually able to formally de-
fine a programming language and develop a corresponding compiler: the
formal foundation is not used to tutor the beginner, but to clarify the dis-
cussion and development by experts. The same is true for ontologies that
underly a software management approach. They need to outlive many soft-
ware development cycles, i.e., they need to have a formal foundation, yet
one must also tutor the domain experts how to use them.

It is one of the successes of this work that it shows how to develop and
use the ontological foundations of this work in a concrete software envi-
ronment. This is done in a way that the usage of the resulting middleware
infrastructure seems amenable to a sophisticated software developer even
though the development of a complex foundational ontology may have to
be left to some few specialists.

Web Services -Semantic Web Services: The analysis of the ontologies
Daniel develops makes evident that very few concepts actually differ when
"upgrading" from conventional middleware to Web services. It also makes
clear that the use of declarative specifications, such as done in Web ser-
vices, or formal declarative specifications, such as done for Semantic Web
Services comes with economic modelling costs that need to be justified by
savings in other places. This lets us presume that formal specifications with
the objective of fully automatic Web service composition and orchestration
remain a valid research topic - but one that will find its applications in
niches rather than in wide-spread adoption by software developers.

FOREWORD xxiii

Thus, the book covers an incredible depth and breadth of approaches. Its
value lies in revising and extending existing methods thereby providing the
cornerstones for specifying, developing and managing distributed applications
in the coming decades - using semantics.

Prof. Dr. Steffen Staab
ISWeb - Information Systems and Semantic Web
Institute for Computer Science
University of Koblenz-Landau
Germany

Acknowledgments

This work was financed by Wonderweb - "Ontology Infrastructure for the
Semantic Web," a European Union Information Society Technologies (IST)
Future Emerging Technolgiges (FET) funded project under contract number
IST-2001-33052 (2002-2004). I feel indebted to all the colleagues for the much
valued cooperation and fruitful discussions we had throughout the project.

This work was financed by Smartweb, a research project funded by the
German Federal Ministry of Education and Research (BMBF). My appreciation
to all the colleagues of another great project still running at the time of writing
this book (2004-2007). It has been a joy working with you all!

My appreciation to all the members of the Software Engineering Task Force
(SETF). The task force is a part of the World Wide Web's Consortium (W3C) Se-
mantic Web Best Practices and Deployment Working Group (SWBPD), where
this work was also successfully exposed and revised [Tetlow et al., 20051.

Finally, I would like to express my gratitude to Amit Sheth - the series
editor - as well as the ladies at Springer: Susan Lagerstrom-Fife and Sharon
Palleschi, who made the publication of this book possible.

PART I

FUNDAMENTALS

Chapter 1

INTRODUCTION

"There is already too much diversity of middleware for many customers and
application developers to cope with ... the complexity of current middleware is

untenable over the long term."
[Bernstein, 19961

1. Motivation
Distributed information systems evolved in response to improvements in

computer hardware and networks. Mainframes were the dominant computer
architecture in the beginning of corporate IT. All three abstract layers of an in-
formation system (i.e., presentation logic, application logic and resource man-
agement) were blurred into a single tier running on a centralized computer.
Once local area networks (LANs) appeared and PCs and workstations became
powerful enough, it was possible to distribute the layers across at least two ma-
chines, with the LAN in between. The result was the well-known clienuserver
architecture.

In order to implement such clientherver systems, developers were in need of
a powerful abstraction mechanism to hide the tedious communication details.
Thus, a new breed of software was born, viz., middleware, whose essential role is
to manage the complexity and heterogeneity of distributed information systems.
Middleware offers programming abstractions that hide some of the complexities
of the underlying network and operating system. Specific middleware solutions
are almost always accompanied by a complex software infrastructure. These
infrastructures tend to have a large footprint.

The magnitude of the challenge to develop and manage distributed, middle-
ware-based applications became staggering. Companies are confronted with
their legacy systems, hundreds to thousands of PCs in different configurations,
several heterogeneous networks, operating systems, a myriad of server farms

SEMANTIC MANAGEMENT OF MIDDLEWARE

and links to business partners - all of which tied together by middleware
infrastructures in a frequently changing and globalized environment. Although
middleware is mandatory to realize such distributed applications, the sheer size
and complexity of middleware-based applications makes their management
very difficult.

Management of middleware can be considered as an endless loop of moni-
toring and controlling middleware elements (e.g., software components or Web
services). We can think of monitoring as the passive activity of retrieving in-
formation about the middleware elements. Taking the gathered information as
a basis, one might control, i.e., change, adapt or configure, specific aspects and
elements of the middleware. Typical management efforts comprise: the assess-
ing and controlling of middleware elements for their efficiency and productivity,
their tailoring to make them operate properly, the definition and control of access
rights and the provision of quantitative information about them.

It is the goal of this work to facilitate the development and management of
middleware-based applications for developers and administrators. The nov-
elty of our approach is to use, adapt, extend and apply semantic technology
to automate some of the management tasks. The principal idea is to model
semantic descriptions of specific middleware elements. Our approach uses a
powerful semantic technology as a basis: ontologies. Ontologies are similar to
conceptual modelling techniques, such as UML or Entity Relationship Mod-
els (ERM). However, ontologies typically feature logic-based representation
languages with formal semantics and executable calculi. It is the executable
calculi that allow developers and administrators to reason and query with seman-
tic descriptions at development, deployment or run time. Therefore semantic
descriptions of middleware elements may be queried, may foresight required
actions, e.g., preloading of indirectly required components, or may be checked
to avoid inconsistent .system configurations - during development as well as
during run time. Reasoning and querying make allowances to automate - or
at least facilitate - management tasks, such as predicting or observing how
middleware elements interact, get into conflict and behave -to name but a few
tasks.

The earliest types of middleware were targeted at developing distributed
applications from scratch and are referred to as conventional middleware. One
of the oldest and probably best-known examples is the remote procedure call
(RPC). RPC systems are still used as a foundation for almost all other forms
of middleware today. The increase of computerization of business processes
was - and still is - the main force driving the development of middleware.
Transaction processing monitors, object brokers, object monitors and message-
oriented middleware followed the RPC in the eighties and early nineties.

Conventional middleware was originally intended to integrate servers that
reside in the resource management layer. Its increasing use led to the pro-

Introduction 5

liferation of distributed applications in companies. Each of the applications
provided a higher level of abstraction and, thus, an added value. However, the
functionality provided by these applications soon became the subject of further
integration. Consequently, middleware for enterprise application integration
(EAI) was created. Two prominent examples are message brokers and workflow
management systems.

The need to integrate applications is not limited to the boundaries of a single
company, however. Similar advantages can be obtained from inter-enterprise
(or business-to-business, short B2B) application integration as much as from
intra-enterprise application integration. The latest breed of middleware was
thus developed to enable B2B application integration. It is obvious that the
World-Wide Web plays the predominant role as a channel to access informa-
tion systems here. In essence, we find two types of middleware in this category.
First, application sewers were the premier type of B2B application integra-
tion middleware to meet the new requirements. They comprise conventional
middleware, but incorporate the Web as key access channel to the functionality
implemented using the middleware. Second, we find Web services, which are
expected to facilitate the development of infrastructures that support program-
matic application integration, dynamic B2B marketplaces and the seamless
integration of IT infrastructures from different cooperations.

While application servers and Web services offer many new possibilities for
B2B application integration, they also bring about new challenges, which we
want to address in this work. A significant aspect of application servers is
the bundling of more and more functionality within the middleware platform.
This is consistent with the current trend towards providing integrated support
for many different middleware abstractions that we have witnessed in conven-
tional middleware. Likewise, Web services middleware is almost universally
being built as an additional tier over existing middleware platforms (mostly
application servers), which are already too complex and cumbersome for de-
velopers and administrators. Introducing new tiers adds further complexity and
complicates the management tasks even more.

2. Research Questions
The usage of ontologies in application servers and Web services middleware

brings about quite interesting research questions, such as the cardinal question
below:

Cardinal Question Can ontologies be used to facilitate the development and
management of middleware-based applications for developers and admin-
istrators?

Throughout this document we divide the Cardinal Question into three Main
Questions, which are aligned with the parts of the book. We discuss middle-

6 SEMANTIC MANAGEMENT OF MIDDLEWARE

ware in general and have a closer look at application servers and Web services to
learn about their complexity (Chapter 2). After introducing ontologies (Chap-
ter 3), Chapter 4 considers these problems as a basis and proposes semantic
management to automate some of the management tasks. The usage of se-
mantic management does not come for free, however, as it relies on semantic
descriptions of middleware elements. Modelling efforts, i.e., manual modelling
or obtaining and integrating existing sources, have to be expended to arrive at
semantic descriptions. As the modelling efforts should be kept as small as
possible, we encounter the first Main Question:

Main Question I How to find a good trade-off between modelling and man-
agement efforts?

In Chapter 4 we approach the trade-off point. We follow the strategy that
we first identify promising use cases for exploiting the semantic descriptions.
Taking the use cases as a basis, we clarify who benefits from what kind of
semantic descriptions, as well as when and for what purposes. The use cases
are distinguished between application servers and Web services and embedded
in respective scenarios. The scenarios pose additional requirements that have
to be met by the system design later on. Chapter 4 answers the questions:

Question 1.1 Who uses semantic descriptions?

Question 1.2 What are the semantic descriptions used for?

Question 1.3 When are the semantic descriptions used?

Question 1.4 Which aspects should be formalized by our ontology?

The answers to the Question 1.4 state a set of modelling requirements for
deciding which aspects our ontology should formalize, that is, which aspects
are relevant in order to realize semantic management of middleware. The
modelling requirements serve as an input to Part 11, which is concerned with
answering the second Main Question:

Main Question I1 How to build a suitable management ontology?

Before modelling a management ontology from scratch, it is desirable to
check if there are existing ontologies that we might reuse for our purpose.
Thus, Chapter 5 analyzes existing ontologies for application servers and Web
services, respectively. The conclusion is that their problematic aspects are
typical for common ontologies. Their loose design and conceptual ambigu-
ity prevents us from simply reusing them. Instead, we expect that a generic,
high-quality ontology might serve us well as a modelling basis. The usage of
such foundational ontologies fosters superior design and high quality of our

Introduction 7

management ontology. Based on specific ontological choices that are suitable
in our case, Chapter 6 analyzes existing foundational ontologies and indicates
an appropriate one.

Our goal is to save modelling efforts and to facilitate the reuse of our manage-
ment ontology in any specific application server and Web service application.
Hence, Chapter 7 discusses the design of a management ontology that captures
a predefined set of semantic descriptions, which can be specialized to any spe-
cific platform. Consequently, the Main Question I1 can be subdivided into three
questions:

Question 11.1 Can an existing ontology be reused for our purposes?

Question 11.2 How to ensure high quality?

Question 11.3 How to decrease modelling efforts and enable reuse?

The formalization of an appropriate management ontology in Part I1 is the
first step towards semantic management. The ontology provides a coherent
formal model that allows the weaving together of separated aspects. The next
step is to propose a way to realize semantic management, i.e., to automate some
management tasks by reasoning and querying based on the ontology. Therefore,
Part I11 is concerned with answering the third Main Question:

Main Question I11 How to realize semantic management of middleware?

In order to arrive at a suitable system design, Chapter 8 reflects on the fol-
lowing issues: First, we have to elaborate on a suitable target platform where
the semantic technology can be integrated, e.g., enterprise application manage-
ment tools, software IDE's, workflow engines or application servers. Second,
we have to think about who or what will provide semantic descriptions. The
number of semantic descriptions that are provided manually by the software
developer must be as few as possible, because software developers will not
be very willing to carry out additional work. Third, we have to consider the
specific requirements of the scenarios introduced in Chapter 4.

In Chapter 9 we implement a prototype of the derived system design by ap-
plying an existing ontology tool suite in an existing application server. Finally,
Chapter 10 discusses the steps necessary to reuse our management ontology in
this concrete implementation. Thus, the Main Question I11 can be subdivided
into:

Question 111.1 What is a suitable target platform?

Question 111.2 Who provides semantic descriptions?

Question 111.3 How to implement semantic management?

8 SEMANTIC MANAGEMENT OF MIDDLEWARE

Question 111.4 How to reuse the ontology?

Part IV consolidates the related works of parts I to I11 into Chapter 1 1 followed
by a conclusion and an outlook (Chapter 12). Each chapter starts with a short
summary of the previous chapter and discusses the goals, as well as the what
and the why of the current one. We give a list of publications if parts of the
chapter have been published before.

3. Contributions
The novelty of our approach is to use, adapt, extend and apply semantic tech-

nology to automate some of the management tasks of application server and
Web services middleware. Such middleware solutions are very complex soft-
ware products that are hard to tame because of the elaborately complex detail
of building distributed systems. So far, their functionalities have mostly been
developed and managed with the help of administration tools and correspond-
ing configuration files, recently in XML. Though this constitutes a very flexible
way of developing and administrating a distributed application, the disadvan-
tage is that the conceptual model underlying the different configurations is only
implicit. Hence, its bits and pieces are difficult to retrieve, survey, check for va-
lidity and maintain. To remedy such problems, we contribute an ontology-based
approach to support the development and administration of middleware-based
applications. The ontology captures properties of, relationships between and
behaviors of the components and services that are required for development
and administration purposes. The ontology is an explicit conceptual model
with formal logic-based semantics. Therefore, its descriptions may be queried,
may foresight required actions, or may be checked to avoid inconsistent system
configurations. Thus, the ontology-based approach retains the original flexibil-
ity in configuring and running the middleware, but it adds new capabilities for
the developer and user of the system. The proposed scheme is prototypically
implemented in an open-source application server.

Our approach is one of the first that acknowledges and explicitly builds on the
observation that there is a trade-off between expending efforts for management
and expending efforts for semantic modelling. At the one end, the objective
of full automation by semantic modelling will need very fine-grained, detailed
modelling of all aspects of middleware elements - essentially everything that
an intelligent human agent must know for managing the middleware. Thus,
modelling efforts skyrocket at the end of fine-grained modelling. At the other
end, where modelling is very coarse and little modelling facilitates management,
management efforts of distributed systems soar. In this work, we approach the
trade-off by identifying promising use cases. The use cases demonstrate that
some management tasks can be facilitated by a justifiable amount of semantic
modelling. In addition, the modelling requirements of the use cases give us clear

Introduction 9

indications of what concepts a suitable management ontology must contain.
Although this seems quite a natural way of proceeding, it is rarely done in
related research fields such as "Semantic Web Services," for instance. The
approaches presented there usually aim at full automation and miss deriving
modelling requirements for their respective ontologies.

Another contribution concerns the typical shortcomings of commonly and
often naively built ontologies. Such ontologies suffer from conceptual ambigu-
ity, poor axiomatization, loose design and narrow scope. They are often reduced
to simple taxonomies and leave open many interpretations of their concepts and
associations. We eliminate such shortcomings by adopting the advanced the-
ory of Guarino and by introducing a new classification of ontologies in order to
clarify their different usages. We carefully choose an appropriate foundational
ontology on the basis of specific ontological choices. The foundational ontol-
ogy is used as a modelling basis for the creation of a concisely axiomatized
management ontology that may be reused in different middleware platforms.
The extensive axiomatization of the management ontology and, thus, its refer-
ence characteristic, allows clarifying the meanings of overloaded terms such as
"software component" or "Web service," allows the distinction among differ-
ent kinds of entities, such as physical and information objects, and provides a
superior design.

Chapter 2

MIDDLEWARE

This chapter introduces the reader to the notion of middleware. The essential
role of middleware is to manage the complexity and heterogeneity of distributed
infrastructures. On the one hand, middleware offers programming abstractions
that hide some of the complexities of building a distributed application. On the
other hand, there is a complex software infrastructure that implements these
abstractions. With very few exceptions, this infrastructure tends to have a large
footprint. The trend today is toward increasing complexity, as products try to
provide more and more sophisticated programming abstractions and incorporate
additional layers.

We advance chronologically and discuss briefly the earliest types of middle-
ware targeted at distributed application development in Section 1 . They are also
referred to as conventional middleware and comprise the remote procedure call
(RPC), transaction processing monitors, object brokers, object monitors and
message-oriented middleware.

Conventional middleware is intended to facilitate the development of dis-
tributed applications from scratch. With the proliferation of distributed appli-
cations in companies, there arose the need for the integration of such appli-
cations as opposed the development from scratch. That triggered further the
evolution of middleware leading to message brokers and workflow management
systems to support enterprise application integration. Both types are discussed
in Section 2.

The need to integrate applications is not limited to the boundaries of a
single company, however. Similar advantages can be obtained from inter-
enterprise (or business-to-business, short B2B) application integration as from
intra-enterprise application integration. Therefore, the latest breed of middle-
ware was developed to enable B2B integration. Application servers and Web
services belong in this category. We have a closer look at both in Section

12 SEMANTIC MANAGEMENT OF MIDDLEWARE

3. In order to limit the scope and hence the size of the problem we focus on
application servers and Web services and neglect newer kinds of middleware.
Examples for newer kinds are grid and peer-to-peer middleware [Junginger and
Lee, 20041, which are also not yet mature enough.

A closer look at application servers and Web services reveals that both types
are suffering from increasing complexity. Application servers bundle more
and more functionality. Web services are almost universally being built as
additional tiers over existing middleware platforms, e.g., application servers,
which are already too complex and cumbersome. The complexity of developing
and managing distributed applications with application servers is countered
by the usage of deployment descriptors. Deployment descriptors are usually
XML-files that reduce the amount of coding by specifying orthogonal issues
in an declarative and application-independent way. In a similar vain, the Web
service community is currently developing a set of standards, denoted WS*, to
manage aspects, such as coordination or composition.

Although deployment descriptors and WS* descriptions constitute a very
flexible way of developing and administrating a distributed application, we
demonstrate by example that there are still many management efforts to be
expended by developers and administrators. The reason is that the conceptual
model underlying the different descriptions is only implicit. Hence, its bits and
pieces are difficult to retrieve, survey, check for validity and maintain. This ob-
servation serves as input to Chapter 4 where we propose semantic management
with the help of explicit conceptual models, i.e., ontologies (cf. Chapter 3).

Parts of this chapter provide an overview of middleware based on the signif-
icant book of [Alonso et a]., 20041. There are also parts based on [Mahmoud,
20041, as well as [Bernstein, 1996, Campbell et al., 19991. The example of
deployment descriptors is taken from [Oberle et al., 2005~1, the one of WS*
descriptors from [Oberle et al., 2005al.

1 Middleware for Distributed Application Development
The essential role of middleware is to manage the complexity and hetero-

geneity of distributed infrastructures, thereby providing a simpler programming
environment for distributed application developers. It is therefore useful to de-
fine middleware as any software layer that is placed above the infrastructure
of a distributed system - the network and operating system - and below the
application layer [Campbell et al., 19991.

Middleware platforms appear in many guises and it is sometimes difficult to
identify their commonalities. Before addressing concrete types of middleware,
it is worthwhile to spend some time clarifying the general aspects underlying
all middleware platforms.

On the one hand, middleware offers programming abstractions that hide
some of the complexities of building a distributed application. Instead of the

Middleware 13

programmer having to deal with every aspect of a distributed application, it is
the middleware that takes care of some of them. Through these programming
abstractions, the developer has access to functionality that otherwise would
have to be implemented from scratch.

On the other hand, there is a complex software infrastructure that implements
the abstractions mentioned above. With very few exceptions, this infrastructure
tends to have a large footprint. The trend today is toward increasing complexity,
as products try to provide more and more sophisticated programming abstrac-
tions and to incorporate additional layers. This makes middleware platforms
very complex software systems [Alonso et al., 20041.

This section discusses the middleware used to construct distributed systems
from scratch, i.e., middleware for distributed application development (also
called conventional middleware). We further discuss middleware for enterprise
application integration and business-to-business (B2B) integration in Sections 2
and 3, respectively. During our discussion we keep an eye on the paradigm shifts
regarding the types and granularity of software building blocks because they
influenced the evolution of middleware. As depicted in Figure 2.1, software
building blocks evolved from procedures to objects, workfows, components
and finally to services.

Use
------ timeline
--+ basis for - .@- subsumed by

Brokers

Software
Building
Blocks

>

I

Figure 2.1. Types of middleware and historical overview.

14 SEMANTIC MANAGEMENT OF MIDDLEWARE

TP Monitors In the early days of corporate IT, computer architectures were
mainframe-based and interaction took place through terminals that only
displayed the information as prepared by the mainframe.

Transaction processing monitors (TP Monitors), also called transaction pro-
cessing middleware or simply transaction middleware, were initially de-
signed to allow mainframes to support as many concurrent users as possible.
As part of this task, TP monitors also needed to deal with multi-threading
and data consistency, thereby extending core functionality with the concept
of transactions. They are the oldest and best-known form of middleware.
Today, distributed transaction monitors are prevailing to enable transactions
spanning several isolated database management systems. [Gray and Reuter,
1993, Tai, 20041

IBM CICS' was the first commercial product offering transaction protected
distributed computing on an IBM mainframe. Nowadays, every major soft-
ware vendor offers its own product, e.g., Microsoft Transaction Server
(MTS)~ or BEA ~ u x e d o . ~ Sun's Java Transaction API (JTA)~ specifies
standard Java interfaces between transaction monitors and involved parties.

RPC-based systems When the decentralization of corporate IT took place as
a consequence of the introduction of the PC, functionality began to be dis-
tributed across a few servers. In order to realize distributed applications,
developers were in need of a powerful abstraction mechanism to hide the
tedious communication details.

The remote procedure call (RPC) responded to this need and was originally
presented in [Birrell and Nelson, 19841 as a way to transparently call a
procedure located on another machine. RPC established first the notion of a
client (the program that calls a remote procedure) and a server (the program
that implements the remote procedure being invoked). It also introduced
many concepts still widely used today: the interface definition language
(IDL), name and directory services, dynamic binding and service interfaces.
Today, RPC systems are used as a foundation for almost all other forms of
middleware, including Web services middleware (cf. Section 3.2).

Several RPC middleware infrastructures were developed that supported a
wealth of functionality, e.g., the Distributed Computing Environment (DCE)
provided by the Open Software Foundation (OSF) [Houston, 19961.

'Customer Information and Control System, cf. http: //www. ibm. com/software/htp/cics/
2http: //msdn.microsoft . codlibrary
3http: //www. beasys . com/products/tuxedo
4http: //java. sun. com/products/jta/

Middleware 15

Object Brokers RPC was designed and developed at a time when the pre-
dominant programming languages were procedural languages, i.e., software
building blocks were procedures. With the advent of object-oriented (0 0)
languages, the object became the software building block, encapsulating
data and behavior.

Platforms were developed to support the invocation of remote objects, thereby
leading to object brokers. These platforms were more advanced in their spec-
ification than most RPC systems, but they did not significantly differ from
them in terms of implementation. In practice, most of them used RPC as
the underlying mechanism to implement remote object calls. [Alonso et al.,
20041

The most popular class of object brokers are those based on the Common
Object Request Broker Architecture (CORBA),' defined and standardized
by the Object Management Group (OMG).

Object Monitors When object brokers tried to specify and standardize the
functionality of middleware platforms, it soon became apparent that much
of this functionality was already available from TP Monitors. At the same
time, TP monitors, initially developed for procedural languages, had to be
extended to cope with object-oriented languages.

The result of these two trends was the convergence between TP monitors
and object brokers that resulted in hybrid systems called object monitors.
Object monitors are, for the most part, TP monitors extended with object-
oriented interfaces. Vendors found it easier to make a TP monitor look like a
standard-compliant object broker than to implement object brokers with all
the features of a TP monitor and the required performance. [Alonso et al.,
20041

Examples of object monitors are Iona's O ~ ~ ~ X O T M . ~ The aforementioned
TP monitors, MTS from Microsoft and Tuxedo from BEA, can be classified
as object monitors as well.

Message-oriented Middleware (MOM) The previous types of middleware
are based on synchronous method invocation, where a client application
invokes a method offered by a specific service provider. When the service
provider has completed its job, it returns the response to the client. This
rather "closely coupled" and "blocking" interoperability soon became too
limiting for software developers.

5http: //www , omg . org/corba/
6http: //www. iona. com/products/orbix. htm

16 SEMANTIC MANAGEMENT OF MIDDLEWARE

The answer to this limit was message-oriented middleware, enabling clients
and servers7 to communicate via messages, i.e., structured data sets typically
characterized by a type and name-value-pairs. This kind of communication
is made possible by message queues controlled by the MOM. Queues can be
shared among multiple applications; recipients can decide when to process
messages and do not have to listen continuously; priorities can be assigned,
to name but a few advantages of this approach. [Curry, 2004bl

TIBETX from Tibco has been a popular product throughout the nineties.*
Implementations of the Java Message Service (JMS)~ can be regarded as
message oriented middleware. Also, CORBA provides its own messaging
service.

2. Middleware for Enterprise Application Integration
The types of middleware discussed so far were originally intended to develop

applications from scratch or to integrate database or file servers. The increasing
use of such middleware led to the proliferation of distributed applications in
companies. Each of the applications provided a higher level of abstraction, and,
thus an added value. However, the functionality provided by these applications
soon became the subject of further integration. The advantage of application
integration is a higher level of abstraction that can be used to hide complex ap-
plication and integration logic. The disadvantage is that now integration is not
limited to database or file servers, but also to applications themselves. Unfortu-
nately, while for databases there has been a significant effort to standardize the
interfaces of specific types of databases, the same cannot be said of applications.
As long as the integration of applications takes place within a single middleware
platform, no significant problem should appear. Once the problem became the
integration of applications provided by different middleware platforms, there
was almost no infrastructure available that could help reduce the heterogeneity
and standardize the interfaces, as well as the interactions between the systems.

The need for such enterprise application integration (EAI) further triggered
the evolution of middleware, extending its capabilities to cope with applica-
tion integration, as opposed to the development of new application logic. Such
extensions involve significant changes in the way middleware is used. This
section briefly discusses message brokers as the most versatile platform for
integration and workflow management systems as the tools to make the inte-
gration logic explicit. Note that both types of middleware can also be used to
develop distributed applications anew instead of integrating existing ones.

' ~ o t e that the distinction between clients and service providers becomes purely conceptual in the case of
MOM. From the perspective of the middleware, all objects look alike.
8ht tp : //www. t i bco . com
'http: / / java . sun. com/products/jms/

Middleware 17

Message Brokers Message-oriented middleware (MOM) is rather static with
regard to the selection of the queues to which the messages are delivered.
For a generic EAI setting however, we need flexible and dynamic means for
communication between arbitrary heterogeneous applications.

In response to those needs, message brokers extend MOM with the capability
of routing, filtering and even processing the messages. In addition, most
message brokers provide adapters that mask the heterogeneity and make
it possible to access all kinds of applications with the same programming
model and data exchange format. The combination of these two factors is
seen as the key to supporting EAI. [Alonso et al., 20041

Some of the best-known message brokers include IBM WebSphere MQ,'O
MSMQ by ~icrosof t" or BEA WebLogic 1ntegration.12

Workflow Management Systems (WfMS) While message brokers are suc-
cessful in providing flexible communication among heterogenous applica-
tions, the integration logic is still hard-coded and, thus, difficult to maintain.

Workflow management systems tackle the other side of the application in-
tegration problem: that of facilitating the definition and maintenance of the
integration logic. Business processes are formally defined as a workflow
and executed by a workflow engine. Workflows are seen as software build-
ing blocks for "programming in the large" because they compose coarse-
grained activities and applications that can last hours. In addition, workflows
compose large software modules, which are typically entire applications.
[van der Aalst and van Hee, 2002, Georgakopoulos et al., 19951

Examples of leading commercial workflow systems include WebSphere MQ
~ o r k f l o w ' ~ by IBM and Microsoft BizTalk ~rchestrat ion. '~

3. Middleware for B2B Application Integration
So far we have studied middleware for creating and integrating distributed

applications within the boundaries of a company. The need to integrate, how-
ever, is not limited to the systems within a single company. Similar advantages
can be obtained from inter-enterprise (or business-to-business, short B2B) ap-
plication integration as from intra-enterprise application integration.

With the Web being pervasively available, it goes without saying that some
of the same technologies that enabled information sharing on the Web also form
the basis for this kind of B2B application integration. In particular, HTTP is the

I0http: //www. ibm. com/software/integration/wmq/
"http: //www.microsoft . com/msmq
12http: //www. bea. com/products/weblogic/integration
I3http: //www . ibm. com/webspheremq/workf low
I4http: //msdn.microsoft . com/library/

18 SEMANTIC MANAGEMENT OF MIDDLEWARE

basic protocol for applications to interact, and XML documents are the standard
way to exchange information.

The need for B2B application integration triggered the evolution of mid-
dleware. Application servers and Web services provided the solution to the
new requirements. Because this work focuses on application servers and Web
services, we discuss them in more detail in the following sections. Note that
both types of middleware can, of course, be used to develop distributed applica-
tions anew and to integrate applications within the boundaries of an enterprise.
Most of the work on workflow management of the early nineties migrated to
Web-based infrastructure in the late nineties to provide technical capabilities
required for B2B applications.

3.1 Application Servers
The increasing use of the Web as a channel to access information systems

forced conventional middleware platforms to provide support for Web access.
This support is typically associated with application servers. Also, they foster
component-based software engineering and introduce the use of deployment
descriptors, all of which are discussed below.

The core functionality of an application server can be described by examining
the major competing alternatives: application servers based on Sun's J ~ E E ' ~
and Microsoft's M NET.'^ Both are similar in terms of their functionality. How-
ever, we focus on J2EE in this section without loss of generality. Basically,
J2EE is defined by a set of API specifications that is implemented by vendors.
Examples are IBM websphereI7 or the open-source application server JBOSS. '~

Components and Frameworks
With the increasing complexity in system requirements and the tight de-

velopment budget constraints, the process of programming applications from
scratch is becoming less feasible. As we have seen throughout this chapter,
the granularity of software building blocks ever increased and also influenced
the evolution of middleware. Constructing applications from a collection of
reusable components and frameworks is emerging as a popular approach to
software development. This way of constructing applications can be seen as a
new paradigm proposing that software should be built by gluing prefabricated
components together as in the field of electronics or mechanics.

A (software) component is a functional discrete block of logic. Components
can be full applications or encapsulated functionality that can be used as part of

I 5 ~ a v a 2 Enterprise Edition, cf. http: //java. sun. com/j2ee/
I6http: //www.microsof t . com/net/
I7http: //WWW. ibm. com/sof tware/websphere/
IXhttp: //www. jboss . org

Middleware 19

a larger application, enabling the construction of applications using components
as software building blocks. Components have a number of benefits as they
simplify application development and maintenance, allowing systems to be
more adaptive and to respond rapidly to changing requirements. Reusable
components are designed to encompass a reusable block of software, logic or
functionality.

If components are analogous to building blocks, frameworks can be seen
as the cement that holds them together. Frameworks are a collection of inter-
faces and interaction protocols that define how components interact with each
other and the framework itself. In essence, frameworks allow components to
be plugged into them. Examples of component frameworks include Enter-
prise JavaBeans (EJB)'~ in the case of J2EE and the Component Object Model
(coM)~' from Microsoft. Frameworks are most often integrated in application
servers. [Curry, 2004al

Application Servers as "Web-enabled" Middleware and Frameworks
Application servers incorporate the Web as a key access channel to the

functionality implemented using conventional middleware, leading to "Web-
enabled" middleware. Incorporating the Web as an access channel has several
important implications. The most significant one is that the presentation logic
of the application acquires a much more relevant role than in conventional mid-
dleware. This is a direct consequence of how HTTP and the Web work, where
all forms of information exchange take place through documents. Preparing,
dynamically generating, and managing these documents constitute main re-
quirements to be met by an application server. An application server intends to
support multiple types of clients including mobile phones, applications, such as
those encountered in conventional middleware, Web services clients, i.e., ap-
plications that interact with the server through standard Web services protocols
(cf. Section 3.2) and Web browsers. Web browsers are by far the most common
type of clients. They interact with the application server via its Web server and
receive statically or dynamically generated HTML pages.

Figure 2.2 depicts the API's of the presentation logic layer in the case of
J2EE. Dynamic pages are generated by ~ervlets ,~ ' viz., Java code that handles
HTTP requests and generally responds with HTML to be rendered by a request-
ing browser. A closely related technology is the JavaServer Pages (J S P) . ~ ~ JSP
is based on servlets, but is more convenient by including Java-code in an HTML
page. Support for parsing and transforming XML documents independent of

19http: //java. sun. com/products/ejb/
20http: //www .microsof t . com/com/
2'http: // java. sun. con/products/servlet
22http: //java. sun. com/products/jsp

20 SEMANTIC MANAGEMENT OF MIDDLEWARE

a specific XML processing implementation is provided by Java API for XML
Processing (JAXP) .~~ ~ a v a ~ a i l ~ ~ provides platform-independent and protocol-
independent means to build mail and messaging applications. Furthermore,
the Java Authentication and Authorization Service (J A A S) ~ ~ enables develop-
ers to authenticate users and enforce access controls upon those users in their
applications. By abstracting from the complex underlying authentication and
authorization mechanisms, JAAS minimizes the risk of creating security vul-
nerabilities in application code.

Servlets fa\JavaServer Pages (JSP) 1
Java API for XML 1 Javahlail 1
Processing (JAXP)

1 Java Authentication and Authorization Service 1
(JAAS) 4

Enterprise Java Java Transaction
Beans (EJB)

Java Naming and Java Message Directory Interface
Service (JMS)

Java 2 Connector
Connectivity (JDBC) Architecture (J2CA)

presentation
logic
layer

application
logic
layer

access to
resource layer

Figure 2.2. J2EE API's divided into layers. [Alonso et al., 20041

At the application layer, application servers conceptually resemble conven-
tional middleware. The functionality provided is similar to that of TP monitors,
CORBA and message brokers. However, component-based software engineer-
ing is typically fostered by application servers, which therefore provide a cor-
responding framework.

The middle section of Figure 2.2 depicts the API's of the application logic
layer in the case of J2EE. We can find conventional middleware, such as JTA
and JMS, together with directory services accessible via JNDI (cf. Section

23http: //java. sun. com/xml/jaxp/
"http: //java. sun. com/products/javamail/
25http://java.sun.com/products/jaas/

Middleware 21

1). The framework for software components in the form of the Enterprise
JavaBeans (EJB) container is a basic part of J2EE-based application servers.
Specific EJB components are deployed in this container and contain the bulk
of application logic. Some application servers use the recent Java Management
Extensions (J M X) ~ ~ technology to put EJB container, directory services and
the like in coarser grained components, called managed beans (short MBeans).
In contrast to EJB, JMX provides its own framework for such managed beans.
The difference is that MBeans can be deployed, undeployed and monitored at
run time. They also support interface evolution by a looser coupling.

Finally, J2EE addresses the problem of connecting to the resource layer. Two
standards are leveraged in this case: (i) Java Database Connectivity (J D B C) ~ ~
that enables developers to access almost any relational database, and (ii) the
J2EE Connector Architecture (J ~ c A) ~ ' that is a generalization of JDBC in that
it defines how to build arbitrary resource adapters.

As the complexity of J2EE shows, a significant aspect of application servers
is the bundling of more and more functionality within the middleware plat-
form. This is consistent with the trend toward providing integrated support for
many different middleware abstractions that we have witnessed in conventional
middleware. In fact, as software vendors continue to extend their middleware
offerings and package them in many different ways, it becomes hard even to
distinguish what is inside an application server and what is not. In many cases,
the name originally given to the application server (e.g., IBM WebSphere) has
been progressively used to label every middleware product offered by a com-
pany. For example, IBM messaging and workflow platforms are now marketed
under the name WebSphere MQ.

Deployment Descriptors
Application servers try to tame the increasing complexity of their bundled

functionality by managing orthogonal issues in an application independent way.
They introduce vertical services, e.g., load balancing, pooling, caching, trans-
actions, session management, user rights and persistence, that span all layers.
Thus, the responsibility is shifted from the development to the deployment
process, i.e., "the process whereby software is installed into an operational
environment" according to the J2EE glossary.

XML files are used to describe how components and applications should be
deployed and how vertical services should be configured. Such deployment
descriptors29 direct deployment tools to deploy a component, an application

26http: //java. sun. com/products/JavaManagement/
27http: //java. sun. com/products/jdbc
28http: //java. sun. com/j2ee/connector/
*"~EE deployment descriptor, http: //java. sun. com/j2ee/j2ee- 1-4-fr-spec. pdf

22 SEMANTIC MANAGEMENT OF MIDDLEWARE

or a vertical service with specific options and describe specific configuration
requirements that a deployer must resolve.

While it is always a good idea to reduce the amount of source code that has
to be written, the deployment process can be quite tricky in itself. Deploy-
ment tools merely act as an input mask, which generates the specific XML
syntax for the user. This is definitely a nice feature; however, the developer
must fully understand the quite complicated concepts that lie behind the options
for the transactional behavior, for instance, and juggle all of them at the same
time. The current deployment tools do not help to avoid or even actively repair
configurations that may cause harmful system behavior. Even worse, this prob-
lem is duplicated, as there is a plethora of deployment descriptors for different
kinds of components (servlets, EJBs, MBeans) and vertical services (security,
transactions, etc.).

We here present a case of how tricky the deployment process can become.
It is the interesting case of indirect permissions due to context switches (cf.
Figure 2.3). As an example, consider the anonymous user who accesses a Web
shop by the HTTP basic authentication. The script on this page, say a servlet,
might connect to the CustomerEnt ityBean, an EJB, which in turn accesses the
Customer table in the database. We assume that the database is only accessible
by dbuser. Therefore, the EJB performs an explicit context switch (which is
frequently described as the run-as paradigm). The call succeeds, because the
user information will be propagated and the call will also be executed using the
dbuser's credentials. This case is definitely not a bug; however, it remains a
pure manual and tedious task for the administrator of the application server to
keep track of such indirect permissions. [Oberle et al., 2005~1

(orr3tQ
Customer

anonymous CustomerEntityBean -?
dbuser

Figure 2.3. Example of indirect permission. [Oberle et al., 2005~1

In this example, the administrator needs to analyze two different deployment
descriptors, as well as the source code to discover the situation outlined above.
First, the deployment descriptor of the servlet container (web. xml) states that
only authenticated users may access the WebShopServlet:

Middleware

Example 2.1 (web. xml)

Second, the WebShopServlet itself accesses the CustomerEntityBean. The
servlet's doGet () method serves the incoming HTTP requests. In our case it
queries user account information out of the Customer table by means of the
bean in order to display it to the user. After retrieving a handle to the bean via
the Home interface, the getCustomerName 0 method of the bean is invoked
by the servlet.

Example 2.2 (WebShopServlet . j ava)
public class WebShopServlet extends HttpServlet (
public void doGet(HttpServ1etRequest request,
HttpServletResponse response)

<
. . .
//get customer info via CustomerEntityBean
CustomerObject cObject = cHome.create()
out.println(c0bject.getCustomerName())

Third, the deployment descriptor of the CustomerEntityBean, called ej b-
-jar. xml, states that the bean performs a context switch via the <run-as-
-specif ied-identity> tag. It thus accesses thedatabase table withdbuser's
credentials:

24 SEMANTIC MANAGEMENT OF MIDDLEWARE

Example 2.3 (e j b- j ar . xml)
. . .
<e jb- j ar>
<enterprise-beans>
cent ity>
cejb-name>CustomerEntityBean</ejb-name>
~ejb-class>edu.unika.aifb.CustomerEntityBe~~/ejb-class~
. . .
<security-identity>
<run-as-specified-identity>
<role-name>dbuser</role-name>
</run-as-specified-identity>

</security-identity>
</entity>

</enterprise-beans)
</e jb- jar>

Assessing such situations for any user, any EJB and any database table be-
comes an impossible task for developers and administrators. Rather, it is de-
sirable to query a system from different perspectives, e.g., "Are there any users
with indirect permission to resources? And i f yes, what are those resources?"
or "Are there any indirect permissions on the Customer table? And ifyes, who
are the users?' Such a system requires the explication of the conceptual model
underlying the different descriptions. Each deployment descriptor introduces
its own conceptual model implicitly in the corresponding XML-DTD. There-
fore, it is difficult to arrive at conclusions that are a result of an integration of
such descriptors. Consequently, Chapter 4 proposes the usage of ontologies to
support developers and administrators in these tasks.

As we introduce in Chapter 3, ontologies are a means to formally specify
a coherent conceptual model with logic-based semantics. The modelling of
the computational domain has to be done rigorously, because we encounter
fundamental ontological questions: What is the difference between the users in
the operating system, in the database system and within the application server's
realm (where users are calledprincipals)? Are there any conceptual differences
except their placement in a different realm? Also, we might be interested in
the relationship between a user in an information system and the corresponding
natural person. To infer the total of access rights granted for a natural person
who might have several user accounts in and across information systems, might
reveal further security holes.

Middleware 25

3.2 Web Services

The types of middleware discussed so far are all based on tightly-coupled
software building blocks (procedures, objects, workflows and components).
That means interfaces between the different software building blocks of an
application are closely interrelated in function and form, thus making them
brittle when any form of change is required to parts or the whole application.

The need for B2B applications to adapt to changing environments is a key
reason that made loosely-coupled systems attractive. In this section we explain
how Web services came about and how they may meet the new requirements.
First, one has to understand the paradigm of service-oriented architectures,
which factorizes the functionality in loosely-coupled services. A second aspect
is the way that Web services redesign the conventional middleware protocols.
Finally, standardization plays a major role, which led to a set of specifications
of different Web services aspects, labelled WS*.

Service-Oriented Architectures (SOA)

Today, businesses have to adopt quickly to changing environments, such as
changing policies, business strengths, business focus, partnerships or industry
standing. Businesses that are able to act flexibly in relation to their environment
where change occurs as required, are called "on demand" businesses. They
triggered the need for loosely-coupled systems in order to become more agile
with respect to changing environments.

The SOA paradigm is the answer to this and other needs. The functionality
of a distributed system is split into services instead of tightly-coupled objects
or components. Sewices are loosely-coupled, autonomous and independent
software building blocks. In order to work on a global scale, standards have
to be defined for service invocation, description, discovery, coordination and
composition.

SOA-based systems do not exclude the possibility that individual services
can themselves be built with object-oriented design. It allows objects within
the system and is as such object-based, but not as a whole object-oriented.
The difference is that many aspects that were hard-coded before have to be
specified dynamically and declaratively. One needs to specify how the overall
application performs its workflow between services. The workflow may include
services not just between departments, but even with other external partners.
Policies have to be defined as to how relationships between services should
transpire. All this has to work in an environment of trust and reliability, which
is given implicitly when business partners know each other and agree on terms
beforehand. [IBM developerworks, 2004al

26 SEMANTIC MANAGEMENT OF MIDDLEWARE

Web Services as Middleware for SOA-based Systems
The Web-based middleware for SOA-based systems is called Web services.

Web services subsume a set of protocols and XML-languages for interface
description, invocation, discovery and composition of services. The minimalist
Web services middleware is comprised of SOAP (Simple Object-based Access
Protocol [Gudgin et al., 2003]), the standard for the invocation, and WSDL
(Web Service Description Language [Christensen et al., 2001]), the standard
for the interface description. Further standards for discovery, coordination and
composition are being developed at the time of writing, as discussed below.30

The evolutionary nature of Web services presents them as extensions to con-
ventional middleware that provides a set of simple interfaces for interactions
across the Internet. These extensions make Web-based integration possible at
least in simple scenarios (such as EAI or closed communities of business part-
ners). SOAP and WSDL constitute yet another tier on the internal middleware
of an organizational unit (cf. ~ i ~ u r e 2 . 4) .

External Middleware

Transaction Monitor, Directory Service, Workflow Engine, ...

I Internet

Internal Middleware I

Transaction Monitor
Directory Service
Workflow Engine
...

Service Service @Q
...

Transaction Monitor
Directory Service
Workflow Engine
...

Internal Middleware 1
Organizational Unit, Organizational Unit,

Figure 2.4. Internal vs. external middleware. [Alonso et al., 20041

Two organizational units are able to perform application integration if they
both agree on using SOAP and WSDL, even if they use different internal mid-
dleware. For example, Web services might draw from components residing in
application servers (internal middleware) distributed over different organiza-
tional units and heterogeneous platforms. Application servers are an obvious

30~essage-oriented middleware is sometimes considered as middleware for SOA-based systems, too. In
fact, it defines similar concepts, but lacks the standardization necessary to realize SOA-based systems on a
global scale. We discuss these matters in the next section.

Middleware 27

target to support such a "wrapping" by SOAP and WSDL, as they provide the
basic infrastructure (Web server, XML parsers, etc.). In most cases, the de-
veloper is only required to mark a certain method with meta-tags in the source
code. The application server cares for automatically generating the WSDL
description and handling the SOAP messages.

The new tiers Web services add to the already overly complex internal mid-
dleware lead to significant performance overhead and increase the complexity of
developing, tuning, maintaining, and evolving multi-tier systems. Translation
to and from XML, tunnelling of invocations through SOAP, clients embedded
in Web servers and many of the technologies typical of Web services do not
come for free. Furthermore, Web services will introduce additional, external
middleware, thus adding extra complexity.

The revolutionary view sees Web services as radically changing the way
integration is achieved. The assumption seems to be that once SOAP and WSDL
are used, then Web services will facilitate the development of infrastructures
that support programmatic application integration, dynamic B2B marketplaces
and the seamless integration of IT infrastructures from different c ~ o ~ e r a t i o n s . ~ '
However, the autonomous nature of such SOA-based systems demands the
redesign of the middleware protocols to work in a loosely-coupled fashion and
across organizational units.

Internal middleware protocols were designed based on assumptions that do
not hold in cross-organizational interactions. For example, they assumed a
central transaction coordinator and the possibility for this coordinator to lock
resources indefinitely. Lack of trust and confidentiality issues often make a
case against a central coordinator and, therefore, middleware protocols must
now be redesigned to work in a fully distributed fashion and must be extended
to allow more flexibility in terms of locking resources. Similar arguments can
be made for all interaction and coordination protocols and, in general, for many
of the other properties provided by conventional and internal middleware, such
as reliability and guaranteed delivery. What was then achieved by a centralized
platform must now be redesigned in terms of protocols that can work in a
decentralized setting and across trust domains. One example of such "external"
middleware is UDDI (Universal Description Discovery & Integration [UDDI
Coalition, 2000]), allowing the discovery of Web services.

In order to facilitate application integration with Web services on a global
scale, the external Web services middleware must rely on standards. These
standards shape the current Web services landscape to a large extent. We have
introduced SOAP, WSDL, as well as UDDI so far. We introduce additional
ones in the next subsection.

3 1 ~ o d a y , Web services are not as revolutionary as one may think. They are mostly used in the evolutionary
way for conventional EAI.

28 SEMANTIC MANAGEMENT OF MIDDLEWARE

WS*
Having an SOA and redefining the middleware protocols is not sufficient to

address loosely-coupled and dynamic application integration on a global scale,
unless the language and protocols become standardized and widely adopted.
Consortia, such as the Organization for the Advancement of Structured Infor-
mation Standards (OASIS)~~ or the World Wide Web Consortium (w ~ c) , ~ ~
attempt to standardize all the different aspects beyond invocation (SOAP), de-
scription (WSDL) and discovery (UDDI). The commitment for standardization
does not necessarily mean that there will be one specification for each aspect,
however. Below, we give an incomplete overview of the aspects that are cur-
rently being specified. Altogether, they form an inscrutable set and are labelled
WS*. [Alonso et al., 20041

WS-Coordination The primary goal of this specification is to create a frame-
work for supporting coordination protocols. In this regard, it is intended as
a meta-specification that will govern specifications that implement concrete
forms of coordination protocols. [Cabrera et al., 20031

WS-Transaction WS-Transaction is an example of a concrete coordination
protocol specified by means of WS-Coordination. WS-Transaction is split
into the WS-AtomicTransaction protocol for short duration transactions and
WS-BusinessActivity to enable existing workflow systems to wrap their
proprietary mechanisms and interoperate across trust boundaries. [Cabrera
et al., 20041

WS-BPEL The Business Process Execution Language for Web Services (WS-
BPEL) is the de facto standard for specifying service composition. It also
allows specifying coordination between Web services, thus acting as an
alternative to WS-Coordination. [Andrews et al., 20051

WS-Security WS-Security is an extension to SOAP for end-to-end applic-
ation-level security that is otherwise ignored by underlying protocols, such
as HTTPS. It adds to SOAP the mechanisms of signatures and encryption.
[Atkinson et al., 20021

WS-Policy is a proposal for a framework through which Web services can
express their requirements, capabilities and preferences (commonly referred
to as "policies") to each other in an interoperable manner. It defines a set of
generic constructs for defining and grouping policy assertions. [Bajaj et al.,
2004, Alonso et al., 20041

32http: / /www. oasis-open. org
33http: //www. w 3 . org

Middleware 29

WS-Trust The Web Services Trust Language (WS-Trust) uses the secure mes-
saging mechanisms of WS-Security to define additional primitives and ex-
tensions for security token exchange to enable the issuance and dissemi-
nation of credentials within different trust domains. [BEA Systems et al.,
20041

Other aspects and specifications include WS-Addressing, WS-Attachments,
WS-Eventing, WS-Federation, WS-Inspection, WS-Manageability, WS-Meta-
DataExchange, WS-Notification, WS-Routing, and many more. An overview
is given in [IBM developerworks, 2004bl.

The advantages of WS* are multiple and have already benefited some in-
dustrial cases. Similar to deployment descriptors in application servers, WS*
descriptions manage orthogonal aspects in an application independent way.
XML-files declaratively describe how Web services should be deployed and
configured. Thus, WS* descriptions are exchangeable and developers may use
different implementations for the same Web service description. The disadvan-
tages of WS*, however, are also visible; even though the different standards are
complementary, they must overlap and one may produce models composed of
different WS* descriptions, which are inconsistent, but do not easily reveal their
inconsistencies. The reason is that there is no coherent formal model of WS*
and, thus, it is impossible to ask for conclusions that come from integrating
several WS* descriptions. Thus, discovering such Web Service management
problems or asking for other kinds of conclusions that derive from the integration
of WS* descriptions remains a purely manual task of the software developers
accompanied by little or no formal machinery.

As an example for a trivial conclusion derived from both a WS-BPEL and
WS-Policy description, consider the following case. Let's return to Example
2.1 on page 23 of a web shop and assume we have realized it with internal
and external Web services composed and managed by a WS-BPEL engine.
After the submission of an order, we have to check the customer's credit card
for validity, depending on the credit card type (VISA, Mastercard, etc.). We
assume that credit card providers offer this functionality via Web services.
The corresponding WS-BPEL process checkAccount thus invokes one of the
provider's Web services, depending on the customer's credit card. Example 2.4
shows a snippet of the WS-BPEL process definition.

Example 2.4 (WS-BPEL)
. . .
(process name=" checkAc~ount~~>
<switch . . . >
<case condition=''getVariableData('card')='VISA)">
<invoke partnerLink="toVISAU
p~rtType='~visa: CCPortType"

30 SEMANTIC MANAGEMENT OF MIDDLEWARE

Suppose now that the Web service of one credit card provider, say Master-
Card, only accepts authenticated invocations conforming to Kerberos or X509.
It states such policies in a corresponding WS-Policy document, such as the one
sketched in Example 2.5. The invocation will fail unless the developer ensures
that the policies are met. The developer has to check the policies manually at
development time or has to implement this functionality to react to policies at
run time, assuming that no policy matching engine is in place.

Example 2.5 (WS-Policy)

As we may recognize from this small example, it is desirable to support the
developer with unambiguous specifications and formal machinery to arrive at
such conclusions automatically. This is particularly helpful when we think of
more sophisticated examples where we have large indirect process cascades or
additional WS* descriptors to consider. However, it remains a manual task for
the developer to discover and assess such situations. The reason is that there is
no coherent conceptual model underlying the WS* descriptions - very similar

Middleware 3 1

to the case of deployment descriptors in application servers. As a consequence,
Chapter 4 proposes the usage of ontologies in Web services middleware to
support developers and administrators in performing such tasks.

Ontologies are a means to formally specify conceptual models with logic-
based semantics. The domain of Web services demands a rigorous modelling
because we are confronted with fundamental ontological questions. What is the
difference between a policy of a Web Service and an access right on a software
component? Are they the same? Can workJows of Web services be modelled
such as the invocation chain of software components? Such questions call for a
concise and fundamental introduction of ontologies, which is given in Chapter

4. Summary
In this chapter we have discussed the evolution of middleware providing a

brief overview for the reader. We have advanced from the earliest types of
middleware targeted at distributed application development. With the prolifer-
ation of distributed applications in companies there arose the need for enterprise
application integration. That triggered further the evolution of middleware re-
sulting in middleware for enterprise application integration. Finally, we have
had a closer look at the current state-of-the-art, viz., middleware for business-to-
business (B2B) application integration. Application servers and Web services
belong in this category. Both offer a wealth of functionalities for realizing
business-to-business application integration via the Web. Application servers
bundle more and more functionality and Web services are almost universally
being built as additional layers over existing middleware platforms, which are
already too complex and cumbersome. The complexity iscountered by the us-
age of deployment descriptors that reduce the amount of coding by specifying
orthogonal issues in an application independent way. In a similar vein, the Web
service community is currently developing a set of standards, WS*, to manage
aspects such as coordination or composition.

Though deployment descriptors and WS* descriptions constitute a very flex-
ible way of developing and administrating a distributed application, we have
demonstrated that developers and administrators still need to expend signifi-
cant efforts. The reason is that the conceptual model underlying the different
descriptions is only implicit. Hence, its bits and pieces are difficult to retrieve,
survey and check for validity and maintain. It remains a manual task to arrive at
conclusions that are the result of combining such descriptions. Hence, Chapter
3 introduces the reader to ontologies as a means to formally specify conceptual
models with logic-based semantics. We have also demonstrated that the do-
main of software components and Web services demands a careful and rigorous
ontological modelling.

Chapter 3

ONTOLOGIES

This chapter introduces the reader to ontologies as a means to explicitly spec-
ify conceptual models with logic-based semantics. Section 1 briefly discusses
the original meaning of ontology as a philosophical discipline and continues
by analyzing the definition of an ontology as used in the Artificial Intelligence
and Database communities. In the latter case, we refer to an information object
and engineering artifact defined by [Gruber, 19951 as an "explicit specification
of a conceptualization." Subsequent sections explain how one can grasp the
formal notion of a conceptualization and clarify the role of the explicit specifi-
cation, i.e., the ontology itself. We also have a look at ontology quality criteria
and a suitable representation formalism. The ontology quality criteria are later
used to assess if existing ontologies can be reused for our purposes. Further-
more, the criteria allow us to motivate that a representation formalism with large
expressiveness constitutes one possibility to increase ontology quality.

Section 2 elicits how one can classify ontologies according to the dimen-
sions purpose, expressiveness and specijicity. The classification acts as a guide
throughout the document. It allows clarifying the different types of ontologies
and the roles they play. In this chapter we take a closer look at foundational
ontologies. They can be used as a starting point for building core and domain
ontologies. In fact, Part I1 exploits a foundational ontology as a modelling basis
for a management ontology. Its reference characteristics, extensive axiomatiza-
tion and domain-independence are particularly suitable for this purpose. Using
a foundational ontology as modelling basis means relating the concepts and
associations of an ontology to the basic categories of human cognition inves-
tigated by philosophy, linguistics and psychology. This prompts the ontology
engineer to sharpen his notions with respect to the distinctions made in the
foundational ontology. Because the domain of software components and Web
services demands a careful and rigorous modelling, foundational ontologies

34 SEMANTIC MANAGEMENT O F MIDDLEWARE

are a good basis to start from. We argue that the resulting core and domain
ontologies have a better design by applying ontology design patterns captured
by the foundational ontology.

A well-designed foundational ontology is very specific about the ontologi-
cal choices to which it commits. Hence, by reusing a foundational ontology
for modelling a universe of discourse, the ontology engineer is also prompted
to decide whether the choices are suitable. This decision is often neglected
or unconsciously made, leading to confusion later on. We discuss important
ontological choices, which are also called ontology meta-criteria, in Section 4.
In Part I1 we choose an appropriate foundational ontology on the basis of the
ontological choices.

Although we'acknowledge the original definition by [Gruber, 19951, we
follow the work and theory of Guarino as depicted in his papers [Guarino
et al., 1994, Guarino and Giaretta, 1995, Guarino, 1998, Guarino and Welty,
20021. The notion of ontology quality and the ontological choices are taken
from Wonderweb deliverables [Borgo et al., 2002,Masolo et al., 2002,Masolo
et a]., 20031, the formalism on quantified modal logic from [Schmitt, 20011.
The way to classify ontologies has not been published before (apart from [Oberle
et al., 2004bl -an internal project report) and was created in cooperation with
Aldo Gangemi. We also cite parts of [Varzi and Vieu, 20041.

1 Definition
The word "ontology" is used with different meanings in different communi-

ties. We distinguish between Ontology (uncountable reading and capital initial)
and an ontology (countable reading and lowercase initial) in the remainder of
this book.

In the first case, we refer to a philosophical discipline, namely the branch of
philosophy which deals with the nature and the organization of reality. Aristotle
dealt with this subject in his ~ e t a ~ h ~ s i c s ' and defined ontology2 as the science
of being. Unlike the special sciences, each of which investigates a class of
beings and their determinations, Ontology regards all the species "... of being
qua being and attributes which belong to it qua being ..." [Aristotle, 350 BC].
In this sense Ontology tries to answer the question: What is being? or, in

 he first books of Aristotle's treatises, known collectively as "Organon:' deal with the nature of the world,
i.e., physics. Metaphysics denotes the subjects dealt with in the rest of the books - among them Ontology.
The Ancient Greek preposition pcr& translates to the spatial "behind," i.e., what is meant by Metaphysics are
the books next to the ones dealing with physics on the shelf. Hence, philosophers often equate Metaphysics
and Ontology.
20ntology is a Greek composite word put together by sb 6v and 6 A6yoc. 6v is the irregular active present
participle of cTvat, English "to be," whose complete stem is revealed in its genitive roS 6vroc. 6 A6yoc is
used by the Ancient Greek with at least five basic meanings, in this case it can be translated as "science."

Ontologies 3 5

a meaningful reformulation: What are the features common to all beings?
[Guarino and Giaretta, 19951

In the second case, we refer to an information object and engineering artifact
as the most prevalent use in the Artificial Intelligence and Database communi-
ties. Ontologies are a means to formally model a specific universe of discourse.
The ontology engineer analyzes relevant entities3 and classifies them into con-
cepts and instance^.^ The backbone of an ontology consists of a concept hi-
erarchy, i.e., a taxonomy. Associations define relationships between concepts
and can be instantiated accordingly. In our domain of middleware, "software
component" and "enterprise bean" might be relevant concepts, where the first
is the superconcept of the latter. "Depends on" can be considered a crucial
association holding between software components. A concrete enterprise bean
running on a computer would then be an instance of its corresponding concept.

In essence, ontologies are similar to existing conceptual modelling tech-
niques, e.g., the Entity Relationship Model [Chen, 19761 or UML [Booch et al.,
19981.~ However, ontologies differ from existing methods and technologies in
the following way: (i) the primary goal of ontologies is to enable agreement
on the meaning of specific vocabulary terms and, thus, to facilitate informa-
tion integration across individual applications; (ii) ontologies are formalized
in logic-based representation languages. Their semantics are thus specified in
an unambiguous way. (iii) The representation languages come with executable
calculi enabling querying and reasoning at run time.

Gruber originally defined this notion of ontology as an "explicit specification
of a conceptualization" [Gruber, 19951. The following sections elaborate on
the notion of conceptualization because it is hard to understand and is often
confused with an ontology itself in common literature.

1.1 What is a Conceptualization?
[Gruber, 19951 refers to the notion of a conceptualization according to

[Genesereth and Nilsson, 19871 who claim: "A body of formally represented
knowledge is based on a conceptualization: the objects, concepts, and other
entities that are assumed to exist in some area of interest and the relationships
that hold among them. A conceptualization is an abstract, simplified view of
the world that we wish to represent for some purpose. Every knowledge base,

3 ~ r o m Latin "ens; entis," the active present participle of "esse," derived from the Greek dvw, English "to
be." Entity denotes the most general being, and, thus, subsumes subjects, objects, processes, ideas, etc.
4 ~ m i t h made us aware that the notion of "concept" is quite ambiguous [Smith, 20041. Therefore, we find
another distinction in common literature. It is the distinction between universals and particulars that can be
informally understood by taking the relation of instantiation as a primitive: particulars are entities which have
no instances; universals are entities that can have instances. In this case, associations are usually considered
as universals.

fact, we visualize ontologies by means of UML class diagrams throughout the document.

3 6 SEMANTIC MANAGEMENT OF MIDDLEWARE

knowledge-based system, or knowledge-level agent is committed to some con-
ceptualization, explicitly or implicitly." Formally, they define conceptualization
as follows:

Definition 3.1 (Conceptualization according to Genesereth)
A conceptualization according to Genesereth is a tuple (D , R) where

D is the universe

R is a set of relations on D

Genesereth and Nilsson's notion of conceptualization refers to ordinary
mathematical relations on a set D (which we always denote by the letter D
without further mention), i.e., extensional relations. These relations reflect a
specific world such as the one depicted in Example 3.1.

Example 3.1
Let us consider an example of sofnvare components and their dependen-
cies. A possible conceptualization of this universe of discourse might
be (D , R) with D = {scl , sc2, scg, scq) and R = { S C , d). The ex-
tensions of both relations might be S C = {scl , sc2, scg, sc4) and d =
{ (s c ~ , sc2), (scl , scg), (sc2, scg)), i.e., S C comprises elements of the universe
which are software components and d formalizes their dependency relations.
The world is depicted in Figure 3.1.

Figure 3.1. A specific world with software components and their dependencies.

Guarino made us aware that this notion of conceptualization is quite prob-
lematic, however. In [Guarino and Giaretta, 19951 he explains that another
world has to be considered a different conceptualization according to this def-
inition. In our universe of software components (Example 3.1), every specific
dependency graph would be another conceptualization.

Example 3.2
Let us consider the following alteration of Example 3.1 with D' = D and R' =
{ S C , dl) where d' = d U { (sc l , scq)). It is obvious that (D , R) # (Dl , R')
and, thus, we have two different conceptualizations according to Genesereth.

Ontologies 37

The problem is that the relations of R reflect a specific world. However, we
need to focus on the meaning of those relations, independently of a world: for
instance, the meaning of the d relation lies in the way it refers to certain pairs
of software components according to their dependency. Therefore, we need
to speak of intensional or conceptual relations. A standard way to represent
intensions (and therefore conceptual relations) is to see them as functions from
possible worlds into sets [Guarino, 19981.

Definition 3.2 (Conceptual Relation)
A conceptual relation pn of arity n is a total finction pn : W -+ 2Dn from
the set U! which we call the set of possible worlds, into the set of all n-ary
(extensional) relations on D.

We can consider our Examples 3.1 and 3.2 as two different worlds wl and
w2. Conceptual relations of S C and d look like follows: SC1 maps ev-
ery possible world to {scl , sc2, sc3, sc4) because software components can-
not cease to be software components in any world we can think of (cf. the
notion of rigidity in [Guarino and Welty, 20021). d2 maps to a specific depen-
dency graph between the four software components. In Example 3.1 we have
d2 (w l) = { (sc l , sc2), (s c ~ , sc3), (sc2, sc3)) and in Example 3.2 d2 (w2) =
{ (sc l , S C ~) , (sc l , sc3), (sc2, sc3), (scl , sc4)). Having the notion of conceptual
relations at hand, we are able to understand Guarino's notion of a conceptual-
ization:

Definition 3.3 (Conceptualization according to Guarino)
A conceptualization according to Guarino is a triple C = (D , W , 92) with

D the universe

W a set of possible worlds

R a set of conceptual relations

1.2 What is an Ontology?
Having clarified the notion of conceptualization, we can now draw our atten-

tion to the definition of an ontology as an "explicit specification of a conceptu-
alization." The explicit specification is achieved by a logical theory, i.e., a set
of logical axioms, expressed in a logical language L. Hence, an ontology can
be regarded as a logical theory that accounts for the intended meaning of the
vocabulary V of L. The vocabulary of a logical language usually consists of a
set of constant, function and relation (predicate) symbols. We do not need func-
tion symbols for our purposes and limit our attention to constant and relation
symbols.

3 8 SEMANTIC MANAGEMENT OF MIDDLEWARE

This section explains how to grasp the intended meaning of a vocabulary
following [Guarino, 19981. We start with the logical language L, which is
typically a variant of first-order logic. For the sake of brevity, we omit an
extensive introduction of first-order logic and only give the usual definition of
a first-order structureY6 as well as the notion of satisfiability and model, which
are required in the following definitions [Schoning, 20001.

Definition 3.4 (First-Order Structure, Model, Logical Theory)
A First-Order Structure M for a logical language L with vocabulary V is a
tuple M = (S , I) with

S = (D , R) being a Conceptualization according to Genesereth

I being an interpretation function I : V --+ D U R that maps vocabulary
symbols of V to elements of the universe D or extensional relations of R.

A logical theory F, consisting of a set of axioms, is satisfiable by afirst-order
structure M if all of its axioms are true. In this case, M is called a model of
F, written M + F.

After introducing the language L we now clarify what is meant by the in-
tended meaning of vocabulary of a language L. The key to this is the notion
of ontological commitment. We say that a logical language L commits to a
conceptualization C by means of an ontological commitment. Formally we
write:

Definition 3.5 (Ontological Commitment)
An Ontological Commitment K of a logical language L with vocabulary V is
a tuple K = (C , Z) with

C = (D , W, R) being a conceptualization according to Guarino and

Z being a total function Z : V --+ D U R mapping vocabulary symbols of
V to elements of the universe D or conceptual relations of R.

The definition above is quite simple: We extend the usual mapping of vo-
cabulary symbols to extensional relations in Definition 3.4 by a mapping to
conceptual relations. We do so because we have learned that extensional rela-
tions are not suitable for expressing conceptualizations in the previous section.
Coming back to our Example 3.1, we would commit the relation symbols S C
and d to the conceptual relations SC1 and d2, respectively.

6 ~ e prefer to use the term "first-order structure" over "model" or "interpretation." The latter two are often
used in common literature, but suffer from heavy overloading.

Ontologies 3 9

The notion of ontological commitment is the link between a conceptualiza-
tion C , which is language independent in the first place, and an ontology, i.e.,
a logical theory expressed in L accounting for K. The next step is to formalize
"accounting for" suitably, i.e., the logical theory should be designed so that
its models approximate the conceptualization as tightly as possible. In other
words, we need a notion of compatibility between the logical theory and the
conceptualization:

Definition 3.6 (Compatibility: Logical Theory - Ontolog. Commitment)
A model M = (S , I) , with S = (D , R) a conceptualization according to
Genesereth, of a logical theory expressed in L is compatible with an ontological
commitment K = (C , Z) , with C = (D , W, R) a conceptualization according
to Guarino, iff

1 there exists w E W so that for all r E R there exists at least one p E V
with r = Z(p) (w)

2 for all constant symbols c E V we have I (c) = Z(c)

3 for all relation symbols p E V there exists at least one p E R with Z(p) = p

4 there exists w E W so that for all relation symbols p E V there exists at
least one p E R with I (p) = p(w)

The set IK(L) of all models of L that are compatible with K is called the set
of intended models of L according to K.

Condition 1 states that the extensional relations of R have to be equal to
a conceptual relation in a specific world. In Example 3.1, we have r =
{ s c ~ , S C ~ , sc3, sc4} = SC1(wl) and r = {(scl , S C ~) , (s q , sc3), (s c ~ , sc3)) =
d2(w1). Condition 2 is simple and just requires that the mapping of constant
symbols to elements of the universe is identical. Example 3.1 does not intro-
duce any constant symbols. In condition 3 we demand that the interpretation
Z, defined in our ontological commitment, maps every relation symbol p to a
conceptual relation p. In the example, the relation symbols S C and d have
to be mapped to the conceptual relations SC1 and d2, respectively. Finally,
condition 4 demands that the interpretations of relation symbols are elements
of a corresponding conceptual relation in a specific world. In Example 3.1,
I (d) has to be equal to d2(wl) = {(sc l , sc2), (scl , sc3), (sc2, S C ~)) .

With the notion of compatibility at hand, we can now clarify the role of an
ontology, considered as a logical theory designed to account for the intended
meaning of a vocabulary V of L. With all of our clarifications, we arrive at the
following definition:

40 SEMANTIC MANAGEMENT OF MIDDLEWARE

Definition 3.7 (Ontology)
Given a language L with ontological commitment K , an ontology 0 for L is
a logical theory designed so that the set of its models approximates as best as
possible the set of compatible, i.e., intended, models of L according to K (c$
Figure 3.2)

all possible structures of L

set of models that satisfy
the ontology (logical theory)

intended models I,(L)

Figure 3.2. Intended models vs. models of the ontology. [Guarino, 19981

In general, it is not easy (nor always convenient) to find the right logical
theory mainly because of cognitive reasons. Everybody conceives the world
differently, applies individual meanings to concepts and changes his or her mind
over time with respect to the meanings. Therefore, an ontology admits other
models besides the intended ones. An ontology can "specify" a conceptualiza-
tion only in a very indirect way, since (i) it can only approximate the intended
models; (i i) such a set of intended models is only a weak characterization of a
conceptualization. The reason for (i) and (ii) is that there is no way to reconstruct
the ontological commitment of a language from a set of its intended models,
since a model does not necessarily reflect a specific world. In fact, since the
relevant relations considered may not be enough to completely characterize a
world, a model may actually describe a situation common to many worlds. This
means that it is impossible to reconstruct the correspondence between worlds
and extensional relations established by the underlying conceptualization.

Therefore, we shall say that an ontology 0 for a language L approximates
a conceptualization C if there exists an ontological commitment K so that the
intended models of L according to K are included in the models of 0. That
leads us to the notion of ontology quality [Borgo et al., 20021:~

 h he notions of precision and completeness can be compared to the measures of precision and recall of
intended models known from information retrieval. Accuracy can be understood as the product of precision
and recall but calculated on worlds, i.e., specific situations, instead of intended models.

Ontologies 4 1

Definition 3.8 (Ontology Quality)
An ontology O1 is more precise than an ontology 0 2 if the models of Ol
cover fewer unintended models. This is the case when the axiomatization of
O1 is richer than that of 0 2 . In an ideal case, the models of the ontology
and the intended models are identical.

An ontology O1 is more complete than an ontology 0 2 ifthe models of Ol
cover more intended models. This is the case when O1 adopts more relevant
conceptual relations in its vocabulary than 0 2 .

An ontology O1 is more accurate than an ontology 0 2 if the models of Ol
exclude more unintended situations. A precise and complete ontology might
not be enough to fully characterize a world. The reason is that the intended
models actually describe a situation common to many worlds.

A typical case for an ontology not being precise enough is depicted in Figure
3.2, where the models of the ontology comprise also unintended models. In our
running example, we do not specify our understanding of software component
(SC) in the form of axioms. Software component is a very broad concept that
leaves open a multitude of interpretations ranging from "part of an application"
to very specific ones, such as enterprise bean. Hence, our ontology comprises
also unindended models. The ontology depicted in Figure 3.2 is also not com-
plete enough because it does not cover all intended models. In our running
example, we are not complete enough if we understand software component
as "part of an application" because "part" and "application" are missing in the
vocabulary. Finally, a way to make an ontology more accurate is to enrich
the universe of the underlying conceptualization. In our running example, we
do not specify whether software components can also depend on Web services
or vice versa simply because our universe does not contain enough relevant
entities.

The criteria are used in Part I1 to assess if the quality of existing ontologies
suffices for our purposes. A way to increase ontology quality is to adopt a
modal logic, which allows one to express constraints across worlds. We discuss
a suitable modal logic in the next section.

1.3 A Suitable Representation Formalism
When choosing a suitable representation formalism for ontologies, one al-

ways encounters the dilemma between expressiveness and decidability. On the
one hand, the representation formalism should enable us to be as precise as
possible. On the other hand, we need a decidable and efficient calculus for our
language to allow reasoning at run time.

In this section, our intention is to approximate the intended models of a
conceptualization as closely as possible, so we choose a rich representation for-

42 SEMANTIC MANAGEMENT OF MIDDLEWARE

malism. Quantified modal logic has proven to be suitable because it introduces
primitives that allow us to quantify over worlds. The reader may note that this
choice does not exclude using a computable and efficient, yet less expressive,
language later on at run time, e.g., a description logic. We elaborate on this
issue in Section 2.

Quantified modal logic is based on first-order logic, but introduces a set
W , which is called the set of possible worlds, and an accessibility relation A
between worlds. Both are defined by means of a Kripke structure. The modal
operators 0 and 0 allow us to quantify over these worlds. OF is interpreted as
"F is true in all worlds" and OF as "there exists one world in which F is true."

Definition 3.9 (Quantified Modal Logic)
A Kripke structure K is a triple K = (W, A, M) with

w a set W called the set of possible worlds

w A W x W a binary relation on W (called the accessibility relation or
alternativeness relation)

w ajrst-order structure Mw = (S , I) that can be different in any w E W

IfK is a Kripke Structure, w E W and F a modal formula, then we dejne
(K , w) + F, i.e., F is true in world w of Kripke Structure K, recursively as
follows:

(K , w) I= r (c l , ..., ck) iff Mw k r (c l , ..., ck) for all relation symbols r and
constant symbols ci with 1 5 i 5 k

H (K , w) + OF ifffor all wl with A(w, w l) we have (K , w l) + F

w (K , w) OF iff there exists wl with A(w, w l) so that (K , w l) + F

w (K , w) + VxF (x) iff for all d E D holds (K , w) + F (d)

w (K , w) + 3xF (x) iff there exists d E D with (K , w) k F (d)

We want to give A the meaning of an ontological compatibility relation.
Sets of worlds must be mutually inaccessible if they do not share the same
assumptions. Coming back to our running example, a set of worlds in which d

Ontologies 43

is given another meaning, e.g., location in time, would not be compatible with
the worlds in which we considered it as a dependency relation between software
components.

To capture such intuitions, A must be an equivalence relation, i.e., reflexive,
transitive and symmetric. If A is an equivalence relation it partitions worlds
into equivalence classes, which are mutually inaccessible. In Figure 3.3, class
[Wl] denotes all worlds in which d is interpreted as dependency relation; [W2]
denotes all worlds in which d is interpreted as location in time, for instance.

- Accessability relation A

Figure 3.3. The equivalence relation A partitions the set of possible worlds W into equivalence
classes [Wl] and [Wz]. For the sake of brevity, we only consider three worlds per class. [WI] n
[Wz] = 0 because both sets of worlds are ontologically incompatible.

We can force A to be the structure of an equivalence relation by adding
specific axioms as tautologies to our modal logic. The relationship between A
and the tautologies is well studied by correspondence theory [Schmitt, 20011.
In our case, the adopted modal logic is the system S5 [Guarino et al., 19941.
The system S5 introduces the axiom O(A + B) + (OA + OB), which leads
to a reflexive A and the axiom 1 O A + O l O A which leads to a transitive and
symmetric A.

2. Classification
In the previous section we have discussed the formal characterization of an

ontology as a logical theory accounting for an ontological commitment. We
have chosen a very rich representation formalism in order to approximate the
intended models as closely as possible. In practice, however, less expressive
languages are used in order to allow (efficient) reasoning at run time.

The difference with respect to expressiveness is only one dimension ac-
cording to which we can classify ontologies. They also differ in purpose and

44 SEMANTIC MANAGEMENT OF MIDDLEWARE

specificity. In the first case, we distinguish between reference and application
ontologies. In the latter case, we distinguish among generic, core and domain
ontologies. All three dimensions are depicted in Figure 3.4 and are discussed
below.

The classification acts as a guide throughout the document. It allows clar-
ifying the different types of ontologies and the roles they play. For example,
Section 3 introduces foundational ontologies which are generic, heavyweight
and used for reference purposes. We exploit a foundational ontology as a start-
ing point for the design of our management ontology in Part 11. The management
ontology acts as a reference for concepts and associations in our universe of dis-
course, is heavyweight and platform independent (core characteristic). Finally,
Part I11 applies the management ontology in a concrete platform for reason-
ing and querying. Thus, its purpose shifts from reference to application. We
have to reduce the axiomatization to fit a computable representation formalism
resulting in a lightweight version. We also have to specialize concepts and
associations to reflect the idiosyncracies of the platform resulting in a domain
v e r s i ~ n . ~

Figure 3.4. Classification of ontologies.

X ~ h e r e exist other types of ontologies, e.g., linguisric or rerminological ontologies [Gangemi et al., 2003a1,
and other classifications, e.g., [van Heijst, 1995, Sheth and Ramakrishnan, 2003,Guarino, 19981.

Ontologies 45

2.1 Classification according to Purpose
We can distinguish between detailed reference ontologies and application

ontologies. The first are only accessed from time to time for reference purposes,
while the latter support reasoning at run time [Borgo et al., 20021.

Application Ontology Used during run time of a specific application putting
constraints on the axiomatization for the terminological service, i.e., the
reasoner. The typical trade-off between expressiveness and decidability re-
quires a limited representation formalism. As an example, consider the
TBox of an ontology in description logics. Note that application ontologies
may also describe specific worlds (called "semantic descriptions," "knowl-
edge base," "metadata," "semantic metadata" or simply "instances.") In
description logics, the specific worlds are captured by the ABox.

Reference Ontology Used during development time of applications for mutual
understanding and explanation between (human or artificial) agents belong-
ing to different communities, for establishing consensus in a community
that needs to adopt a new term or simply for explaining the meaning of a
term to somebody new to the community. Although parts of the reference
ontology can be formalized in a TBox as well, description logics are usually
not expressive enough for reference purposes.

2.2 Classification according to Expressiveness
There is a tradeoff between a lightweight and a heavyweight ontology com-

mitting to the same conceptualization: heavyweight ontologies try to specify
the intended meaning of a vocabulary as precisely as possible. Their primary
motivation is to enable mutual understanding in a heterogeneous environment.
Their drawback is that they may be hard to develop and to reason with, both be-
cause of the number of axioms and the expressiveness of the language adopted.

Lightweight ontologies, on the other hand, may consist of a minimal set of
axioms written in a language of limited expressiveness. Such an ontology may
support only a limited set of specific services, intended to be shared among
users who already agree on the underlying conceptualization.

The tradeoff coincides with the dilemma between expressiveness and decid-
ability of representation languages. On the one end, we find higher-order logic,
full first-order logic or modal logic as that used in Section 1. On the other
end, we find less stringent subsets of first-order logic, which typically feature
executable calculi. They can be split in two major paradigms. First, languages
from the family of description logics (DL) [Baader et a]., 20031 are strict sub-
sets of first-order logic. The second major paradigm comes from the tradition
of logic programming (LP) [Das, 19921. Though logic programming often uses
a syntax comparable to first-order logics, it assumes a different interpretation

46 SEMANTIC MANAGEMENT OF MIDDLEWARE

of axioms. Unlike a Tarski-style model theory, logic programming selects only
a subset of models to judge semantic entailment of sentences. There are dif-
ferent ways to select subsets of models resulting in different semantics - all
of them geared to deal more efficiently with larger sets of data than common
approaches based on first-order logic. One of the most prominent differences
resulting from this different style of logical models is that expressive logic
programming axiomatizations become non-monotonic.

Heavyweight Ontology Heavyweight ontologies are extensively axiomatized
and, thus, represent ontological commitment explicitly. The purpose of
the axiomatization is to exclude terminological and conceptual ambiguities,
which are due to unintended interpretations. Every heavyweight ontology
can have a lightweight version. As with all dimensions, the borderline
between lightweight and heavyweight is not clearly delimited.

Lightweight Ontology Ontologies are often reduced to a simple taxonomy of
concepts and a small number of associations. We classify such ontologies as
lightweight ontologies because they are hardly axiomatized, as opposed to
heavyweight ontologies. Lightweight ontologies are used when the intended
meaning of the concepts used by the community is more or less known in
advance by all members, and the ontology can be limited to those structural
relationships among concepts that are considered as relevant.

2.3 Classification according to Specificity
The classification according to specificity introduces three layers: generic,

core and domain ontologies. The reader may note that "pure" layers are impos-
sible, since domain ontologies are mixed up with excerpts of other domains,
other cores, etc. Moreover, the domain layer can shift with detail, application,
or even evolution of a domain. [Guarino, 19981

Generic Ontology The concepts defined by this layer are considered to be
generic across many fields. Typically, generic ontologies (synonyms are
"upper level" or "top-level" ontology) define concepts such as state, event,
process, action, component, etc.

Core Ontology Core ontologies define concepts which are generic across a
set of domains. Therefore, they are situated in between the two extremes of
generic and domain ontologies. The borderline between generic and core
ontologies is not clearly defined because there is no exhaustive enumeration
of fields and their conceptualizations. However, the distinction is intuitively
meaningful and useful for building libraries.

Domain Ontology Domain ontologies express conceptualizations that are spe-
cific for a universe of discourse. The concepts in domain ontologies are of-
ten defined as specializations of concepts in the generic and core ontologies.

Ontologies 47

The borderline between core and domain ontologies is not clearly defined
because core ontologies intend to be generic within a domain. Thus, it is
usually hard to make a clear cut between generic and core as well as be-
tween core and domain ontologies. A concept, such as software component,
would be placed in a core ontology for application servers for reuse'in every
possible domain ontology we can think of. However, a concept, such as
enterprise bean, might only be relevant in a specific J2EE setting.

3. The Role of Foundational Ontologies
While the development of some kinds of applications may be easier if ambi-

guities in low quality ontologies are simply ignored, more sophisticated tasks
necessitate the use of carefully designed ontological structures. This is the case
when ontologies are used for meaning negotiation and explanation of terms,
for establishing consensus in a community that needs to adopt a new term or
simply for explaining the meaning of a term to somebody new to the commu-
nity. Our first investigation of the domain of software components and Web
services in Section 3 already revealed that a careful and rigorous ontological
modelling is necessary. We encountered fundamental ontological questions,
such as What is the difference between the users in the operating system, in the
database system and within the application sewer's realm?, How to model the
relationship between a user in an information system and the corresponding
natural person? or What is the difference between a policy of a Web Service
and an access right on a software component? Are they the same? Further-
more, it is crucial to concisely explain concepts, such as software component or
Web service, when designing a management ontology in Part 11. Such concepts
typically suffer from ambiguity, i.e., users often differ in their understanding of
such terms. An explicit representation of ontological commitment is required
in order to exclude terminological and conceptual ambiguities bound to unin-
tended interpretations. In this case, a rich axiomatization (in addition to an
adequate informal documentation) seems to be unavoidable.

Even if two users or systems adopt the same vocabulary, there is no guaran-
tee that they can agree on a certain definition unless they commit to the same
conceptualization. Assuming that each system has its own conceptualization, a
necessary condition in order to make an agreement possible is that the intended
models of the original conceptualizations overlap. Supposing now that these
two sets of intended models are approximated by two different ontologies, it
may be the case that the two ontologies overlap while the intended models do
not (right side of Figure 3.5). This means that a bottom-up approach to systems
integration based on the integration of multiple local ontologies may not work,
especially if the local ontologies are only focused on the conceptual relations
relevant to a specific context. Therefore, they are only weak and ad hoc approx-
imations of the intended models. Hence, it seems more convenient to agree on

48 SEMANTIC MANAGEMENT OF MIDDLEWARE

a generic ontology as a starting point for core and domain ontologies rather than
relying on agreements based on the intersection of different ontologies (left side
of Figure 3.5). [Guarino, 19981

all possible structures of L

ontology of A

Figure 3.5. Two agents A and B can only communicate if their intended models IA(L) and
IB(L) overlap. [Borgo et al., 20021

We shall use the term foundational ontologies for such ontologies, ultimately
devoted to facilitate mutual understanding. Designing a foundational ontology
is a tedious task and requires expert knowledge. Figure 3.6 depicts how founda-
tional ontologies are categorized according to the three dimensions introduced.
They are heavyweight, i.e., extensively axiomatized and generic, i.e., domain-
independent. Their main purpose is to have a concise reference at development
time. However, lightweight versions of a foundational ontology can also be used
for reasoning at run time. In fact, Part I1 leverages a foundational ontology as
a starting point for our management ontology to benefit from its advantages.

Because of their goals and nature, foundational ontologies need an expressive
language in order to suitably characterize their intended models. Their compu-
tational requirements are less stringent, since their main purpose is for meaning
negotiation (reference characteristic), rather than for terminological services,
i.e., run time reasoning. However, in order to also leverage the foundational
ontology in a running system, one usually adopts the following approach:

1 The foundational ontology is axiomatized in full first-order or modal logic.

2 The part of the axiomatization that can be expressed in an executable lan-
guage is isolated and implemented in a specific application (together with
core and domain ontologies).

3 The remaining part is added in the form of comments attached to concepts
and associations.

Ontologies

Figure 3.6. Classification of ontologies and the role of foundational ontologies.

Step 2 lets the ontology engineer choose a specific representation language
that is executable, i.e., reasoning algorithms can be put into action during run
time. This step requires the ontology engineer to manually adapt or remove the
axioms of the foundational ontology. The result is a lightweight version of the
foundational ontology.

Of course, building foundational ontologies is extremely hard, both concep-
tually and computationally. However, it only needs to be undertaken once, be-
fore a cooperation process starts. An ontology engineer should strive for reusing
a proven foundational ontology before modelling a core or domain ontology.
The ontology engineer can thus leverage a richly predefined set of generic con-
cepts and associations. The assumption of such a top-down approach is that
core and domain ontologies have a better design by applying ontology design
patterns captured by the foundational ontology.9 In addition, well-designed
foundational ontology is very specific about the ontological choices to which
it commits. This decision is often neglected or unconsciously made, leading
to confusion later on. We discuss important ontological choices in the next
section.

-

9 ~ x a m p l e s for ontology design patterns are locations in space and time, which can be applied and specialized.
The World Wide Web Consortium has even introduced a task force for this subject, cf. http: //www. w3.
org/2001/sw/BestPractices/OEP/.

50 SEMANTIC MANAGEMENT OF MIDDLEWARE

4. Ontological Choices

Before addressing specific issues about the domain, its concepts and associa-
tions, it is important to clarify the general attitude towards ontological analysis,
or - in other words -- the constraints and the motivations that influence the
conceptualization of reality. This clarification is often unconsciously made and,
thus, remains blurred, leading to confusion later on.

In an ideal case, a foundational ontology is used as a starting point for mod-
elling a domain. A well-engineered foundational ontology is very specific about
the ontological choices to which it commits. Hence, the ontology engineer is
prompted to decide whether the ontological choices are suitable by reusing a
foundational ontology. We discuss typical ontological choices, which are also
called ontology meta-criteria, in the following sections. For the design of our
management ontology, Part I1 chooses an appropriate foundational ontology on
the basis of the ontological choices.

4.1 Descriptive vs. Revisionary

A descriptive ontology aims at describing the ontological assumptions be-
hind language and cognition by taking the surface structure of natural language
and common sense seriously. Under this approach, ontological categories are
postulated in a rather unrestricted way, independently of evidence coming from
other areas, such as physics or astronomy. In a descriptive ontology, the cate-
gories refer to cognitive artifacts, more or less depending on human perception,
cultural imprints and social conventions. The distinction between things and
events is typically considered as a human perception and is adopted by descrip-
tive ontologies..

A revisionary ontology, on the other hand, gives less importance to linguistic
and cognitive aspects, and does not hesitate to suggest paraphrases of linguis-
tic expressions or re-interpretations of cognitive phenomena in order to avoid
ontological assumptions considered debatable on scientific grounds. A revi-
sionary ontology is committed to capture the intrinsic nature of the world. As a
consequence, an ontology of this type may impose that only entities extended
in space and time exist.

To give an example: common sense distinguishes between things (spatial
or non-spatial objects), such as hardware or software components, and events
(temporal objects), such as transactions or the lifecycle of a software component.
In the wake of relativity theory, however, time is only another dimension for
objects and some philosophers and computer scientists have come to believe
that the commonsense distinction between things that are and things that happen
should be abandoned for a view according to which everything extends in space
and time. [Borgo et al., 20023

Ontologies 5 1

4.2 Multiplicative vs. Reductionist
A multiplicative ontology aims at giving a reliable account of reality as it

allows different entities to be co-localized in the same space-time. These co-
localized entities are assumed to be different because they have incompatible
essential properties. The drawback of this position is that it results in a larger
number of basic concepts.

A reductionist ontology postulates that each space-time location contains
at most one object: incompatible essential properties are regarded as being
linked to different points of view from which one can look at the same spatio-
temporal entity. Typically, a reductionist ontology describes a great number of
ontological differences with a smaller number of concepts.

As an example, consider an application and the software components that
make up the application. The multiplicativist states that these must be different
entities, yet co-located: the application is constituted by a number of software
components, but it is not a software component itself. When an application is
formed, new properties are instantiated (e.g., the number of software compo-
nents it uses), thus justifying the emergence of a new entity. The reductionist
claims that the application and the software components are surely different,
although not as entities, but as views of the same non-spatial object. [Borgo
et al., 20021

4.3 Possibilism vs. Actualism
The fundamental thesis of actualism is: "Everything that exists is actual."

Possibilism is the denial of this thesis and there are various forms of possibilism
that correspond to the various ways in which one can deny this thesis. Claims,
such as, "it is possible that a software component scl depends on sc2" are known
as modal claims, because the sentential prefix "it is possible that" indicates a
mode in which the statements it precedes are true. Modal claims are ubiquitous
in our thought and discourse. Many of our reflective and creative thoughts seem
to be about possibilities and much of our logical reasoning involves drawing
conclusions which, in some sense, necessarily follow from premises that we
already believe.1°

When committing to possibilism, we are able to represent possibilia, i.e.,
possible entities, in our domain. In this case, the representation language is
required to express modalities, i.e., quantification over worlds. Basically, two
approaches are possible: either one includes modal and temporal operators in
the representation language from the very beginning or one reproduces modal
reasoning into a first-order language, adding time and world parameters to the
predicates. The first approach is called modal logic where we are able to literally

I0http: //plate. stanford. edu/entries/actualism/

52 SEMANTIC MANAGEMENT OF MIDDLEWARE

translate the expression, "it is possible that a software component scl depends
on sc2" into the formalism. The second approach only allows rephrasing the
expression by, "there is a world in which scl depends on SC~."

4.4 Endurantism vs. Perdurantism
A fundamental ontological choice deals with the notion of change. What does

it mean for an entity to change? This question raises the problem of variation
in time and the related issue of the identity of the objects of experience. There
are two main approaches, viz., endurantism (also called 3D paradigm) and
perdurantism (also called 4D paradigm).

Perdurantism assumes that entities extend in time and in space. That means
entities have both spatial and temporal parts (and, therefore, four dimensions).
Therefore, a 4D entity (usually called perdurant, occurrence or simply process)
is not wholly present at a point in time, but its whole is extended in space, as
well as time. The entity at a point in time is a temporal part of the whole. For
example, the lifecycle of a software component can be considered a 4D entity,
where the phases of the initialization, the running state and the termination are
its temporal parts.

Endurantism treats entities as 3D objects (sometimes called endurants or
continuants) that pass through time and are wholly present at each point in time.
Hence, 3D entities do not have temporal parts. A software component can be
considered a 3D entity as opposed to its lifecycle (in which it participates). It
is wholly present during all three phases of its life." Generally speaking, the
3D approach corresponds well with the way that language works. Language
has a focus around here, now, you and me as a context, and on the current
state of affairs. This leads to efficient communication under the most common
circumstances. [Stell and West, 20041

4.5 Extrinsic Properties
Besides the ontological choices discussed above, several extrinsic properties

of foundational ontologies play an important role. The ontology engineer might
base his decision on the representation language, existing links to linguistic
ontologies, as well as on modularization.

Representation Language We already discussed in Section 2 that represen-
tation languages typically encounter the trade-off between expressiveness
and efficiency. We have undecidable languages, such as modal logic on the
one hand and descriptions logics or logic programming on the other. Other
criteria for the choice of the language include standardization. As an exam-

"Note that a software component is non-physical and, therefore, not extended in space. However, the
distinction is meaningful also for non-physical objects.

Ontologies 5 3

ple, the World Wide Web Consortium recently published a recommendation
for the Web Ontology Language (OWL) [McGuinness and van Harmelen,
20041, which is based on description logics.

Link to Linguistic Ontologies As mentioned in Section 2, linguistic or lexical
ontologies express only classes corresponding to existing natural language
terms. WordNet [Miller et al., 19901 is the most prominent representa-
tive. For some applications it might be of interest to have the foundational
ontology linked to such linguistic information as well.

Modularization A well-designed foundational ontology should decrease the
danger of over-commitment, i.e., the inclusion of theories that are not used
or not shared by the engineer, by extensive modularization along the on-
tological choices and domains. It should be minimal and include only the
most reusable and widely applicable generic categories. Typical theories
that come in the form of ontology modules are: theories of time, plans,
contextualization or information objects.

5. Summary
In this chapter we have introduced the reader to ontologies as a means to

explicitly specify conceptual models with logic-based semantics. Such con-
ceptual models are required to harmonize the implicit and incoherent models
underlying the deployment and WS* descriptions of application servers and
Web services middleware. We have discussed ontology quality criteria, which
are used later on to assess whether the quality of existing ontologies is sufficient
for our purposes.

We have also introduced a possible classification of ontologies, which acts
as a guide throughout the document. It allows us to clarify the different types
of ontologies and the roles they play. In this chapter we have had a closer look
at foundational ontologies. Their role is that of a starting point for building
core and domain ontologies. In Part I1 a foundational ontology is exploited
as a modelling basis for our management ontology, i.e., we relate its concepts
and associations to the basic categories of human cognition investigated by
philosophy, linguistics and psychology. Thus, we are prompted to sharpen
our notions with respect to the distinctions made in the foundational ontology.
Having learned that the domain of software components and Web services
demands a careful and rigorous modelling, foundational ontologies are a good
basis from which to start modelling.

Each foundational ontology commits to specific ontological choices, such as
endurantism, possibilism, etc. We have discussed the major ontological choices
in this chapter because Part I1 decides chooses an appropriate foundational
ontology based on these choices.

Chapter 4

TOWARDS SEMANTIC MANAGEMENT

In Chapter 2 we have discussed the evolution of middleware focussing on
application servers and Web services. Their deployment descriptors and WS*
descriptions make development and management very flexible. However, the
conceptual model underlying the different descriptions is only implicit. Hence,
its bits and pieces are difficult to retrieve, survey, check for validity and maintain.

To remedy such problems, we propose the semantic management of software
components and Web services to support the developer and administrator. The
underlying conceptual model of component and service descriptions has to be
made explicit by formal logic-based semantics. As we have discussed in Chap-
ter 3, this can be achieved by applying an ontology, which, in our case, has to
capture properties of, relationships between and behaviors of the components
and services that are required for management. Therefore, semantic descrip-
tions of software components and Web services may be queried, may foresight
required actions, or may be checked to avoid inconsistent system configurations
(during development, as well as during run time). Thus, the ontology-based
approach retains the original flexibility in configuring and running the middle-
ware, but it adds new capabilities for the developer and administrator of the
system.

However, semantic management does not come for free. Modelling efforts
have to be expended by developers and administrators in order to arrive at se-
mantic descriptions of components and services. We claim that the full breadth
of management requires an understanding of the world that is too deep to be
modelled explicitly. Instead, we foresee a more passive role for semantic man-
agement - one that is driven by the needs of the developers who must cope
with the complexity and who could use valuable tools for integrating previously
separated aspects.

56 SEMANTIC MANAGEMENT OF MIDDLEWARE

This line of argumentation leads us to our working hypothesis: There is a
trade-off between expending efforts for management and expending efforts for
semantic modelling. The tradeoff is depicted qualitatively in Figure 4.1. On the
one hand, typical management efforts comprise the assessing and controlling
of components and services for their efficiency and productivity, their tailoring
to make them operate properly, the definition and control of access rights and
the provision of quantitative information about them. On the other hand, se-
mantic descriptions require modelling efforts that comprise manual modelling
or obtaining and integrating existing sources.

Efforts

high

low

coarse fine

Granularity
of Modelling

Figure 4.1. Working Hypothesis.

The objective of automating all management tasks by semantic modelling
needs very fine-grained, detailed modelling of all aspects - essentially every-
thing that an intelligent human agent must know for managing the middleware.
Thus, modelling efforts skyrocket at the end of fine-grained modelling. At
the other end, where modelling is very coarse and little modelling facilitates
management, efforts for managing distributed systems soar as experiences have
shown in the past. No matter what the exact scale of granularity and efforts
are, the qualitative indication of management and modelling efforts, such as
depicted in Figure 4.1, leads to an overall total effort picture as indicated in the
same figure.

In this chapter we elaborate on the Main Question I from the Introduction:
How tofind a good trade-off between modelling and management efforts? The
answer is derived from an (inexhaustible) set of use cases (Section 2) that
respond to the Questions I. 1 who uses the semantic descriptions?, 1.2 what are

Towards Semantic Management 57

they used for, and 1.3 when do they occur? The use cases also serve as an input
to Part I1 for choosing which aspect our ontology should formalize (Question
1.4). The use cases are embedded in scenarios for a specific type of application
server and for a Web services application, respectively (Section 1).

Parts of this chapter have been published in conference proceedings and
technical reports. The Application Server for the Semantic Web scenario was
originally introduced in [Oberle et al., 2005dl. The Web Services in SmartWeb
scenario stems from the German BMBF project of the same name. Application
server use case are taken from [Oberle et al., 2004a1, Web services use case
from [Oberle et al., 2005al.

1. Scenarios
In this section we discuss two scenarios in which we later embed our use

cases. The first one stems from the concrete needs of the wonderweb' project,
whose objective was, among others, to provide a comprehensive infrastructure
to link new and existing Semantic Web tools. We first introduce the reader to the
Semantic Web, followed by the particular situation for application development
it creates. The conclusion is that we need an Application Serverfor the Semantic
Web extending common application servers for easier development of Semantic
Web applications.

The second scenario, called Web Services in SmartWeb, stems from the
project of the same name.2 The goal of the SmartWeb project is to lay the
foundations for multimodal user interfaces to distributed Web services on mo-
bile devices. This results in the need to integrate a more or less confined set
of several Web services into the system. Statical coding of the Web services
invocations and compositions will lead to an inflexible system.

It is desirable to attach semantic descriptions to relevant components and
services in both scenarios, such that some management tasks can be automated.
We encounter the typical trade-off between management and modelling efforts
that is addressed in Section 2 by discussing typical use cases.

1.1 An Application Server for the Semantic Web
The Semantic Web

The Internet and the WWW in particular were designed as an information
space, with the goal that it should be useful not only for human-human commu-
nication, but also that machines would be able to participate and help. One of

'wonderweb [Oberle et al., 2005el has been a European Union IST (Information Society Technolo-
gies programme) project funded by the initiative on Future and Emerging Technologies (FET). http:
//wonderweb.semanticweb.org
'smartweb is funded by the German Federal Ministry of Education and Research (BMBF). http:
//smartweb. semanticweb. org

5 8 SEMANTIC MANAGEMENT OF MIDDLEWARE

the major obstacles is the fact that most information on the WWW is designed
for human consumption. Even if it was derived from a database with well de-
fined meanings (in at least some terms), the meaning of the data is not evident
to a web application system. [Berners-Lee, 19981

The way out of this shortcoming is the Semantic Web, which augments the
current WWW by giving information a well-defined meaning, thereby better
enabling computers and people to work in cooperation. This is done by adding
machine understandable content to Web resources. The results of this process
are semantic descriptions that can be a simple statement, such as "site x's author
is Daniel Oberle." Such descriptions are given their semantics by referring to
an ontology (cf. Chapter 3). For example, in the statement above, we could
express that "Daniel Oberle" is a PhD-Student and that PhD-Student is a
specialization of Graduate-Student, where both concepts are introduced in
an ontology.

In this section we want to introduce the reader to the architecture and lan-
guages of the Semantic Web. We start with the static part, which is depicted on
the left hand side of Figure 4.2 [Bemers-Lee, 20001, i.e., its language layers.
Unicode, the URI and namespaces (NS) syntax and XML are used as a basis.
XML's role is limited to that of a syntax carrier for data exchange. XML Schema
[Biron and Malhotra, 20011 introduces simple data types, such as string, date
or integer and allows us to define complex data types.

Figure 4.2. Static and dynamic aspects of the Semantic Web layer cake.

The Resource Description Framework (RDF) may be used to make simple
assertions about Web resources or any other entity that can be named. A simple
assertion is a statement that an entity has a property with a specific value, for
example, that the author of this work has a name property with value, "Daniel

Verification '

Inferencing; .

Monitoring -
I Versioninn .

Evolution .
+

Rollback
Transactions

Storage
Modification I

Access

Trust

Proof

Logic

Ontology vocabulary

I RDF, RDF Schema

0

5 +

2 M
.4

CA
+
Y cd
.r(

M
.4

CI

XML, Namespaces, XML Schema

Unicode URI

Towards Semantic Management 59

Oberle." RDF Schema extends RDF by class and property hierarchies that
enable the creation of simple ontologies.

RDF and RDFS are already standardized by the World Wide Web Consortium
(W3C) [Manola and Miller, 20041. Figure 4.3 depicts an example for semantic
descriptions in the domain of research and academia. The ontology features
a concept Person, along specializations, such as Graduate-Student, PhD-
Student, as well as Academicstaff and Professor. The modelling primitives
of RDFS formalize the domain description as RDF statements, e.g., PhD-
Student rdfs:subClassOf Graduate-Student. CooperatesWith is a sym-
metric property defined on Person by using the rdfs:domain and rdfs:range
primitives.

Daniel Oberle

He is working together with
Steffen SLaab - on semantic
mtddleware

x:cooperatesWith

Semantic
Descriptions

Web page

URL

~:Prof.ssor rdf :ID="p~rson-sst">
<x:n->Steffen Staab</x:n->

. . .
/x:Prof.ssor>

Steffen Staab

Semanttc Web, Knowledge
Management, Semantlc

Figure 4.3. Semantic Web example in RDF(S) notation ([Manola and Miller, 20041) where
ovals represent concepts and edges represent associations.

XML serializations of RDF statements can be added to Web resources, such
as the homepages of PhD-Student "Daniel Oberle" and Professor "Steffen
Staab." The descriptions formally define both as instances of the ontology's
concepts through the rdf:type primitive. Relationships are provided with formal
semantics by referring to the ontology. A search engine could later infer that

60 SEMANTIC MANAGEMENT OF MIDDLEWARE

also "Steffen Staab" cooperates with "Daniel Oberle" because the property is
defined to be symmetric.

The Ontology layer features the Web Ontology Language (OWL [McGuin-
ness and van Harmelen, 20041). OWL is a family of richer ontology languages
consisting of OWL Lite, DL and Full. They augment RDF Schema and are
based on the descriptions logics (DL) paradigm [Baader et al., 20031. OWL
Lite is the simplest of these. It is a limited version of OWL DL enabling a
simple and efficient implementation. OWL DL is a richer subset of OWL Full
for which reasoning is known to be decidable so complete reasoners may be
constructed, though they will be less efficient than an OWL Lite reasoner. OWL
Full is the full ontology language which is undecidable, however.

The Logic layer3 will provide an interoperable language for describing the
sets of deductions one can make from a collection of data. Given an ontology-
based information base, one can derive new information from existing data via
logical rules.

The Proof language will provide a way of describing the steps taken to reach
a conclusion from the facts. These proofs can then be passed around and
verified, providing short cuts to new facts in the system without having each
node conduct the deductions themselves.

The Semantic Web's vision is that once all these layers are in place, we will
have an environment in which we can place trust that the data we are seeing, the
deductions we are making, and the claims we are receiving have some value.
The goal is to make a user's life easier by the aggregation and creation of new,
trusted information over the Web [Dumbill, 20011. The standardization process
has currently reached the Ontology layer, i.e., Logic, Proof and Trust layers are
not specified yet.

The right hand side of Figure 4.2 depicts the Semantic Web's dynamic aspects
that apply to data across all layers. Often, the dynamic aspects are neglected
by the Semantic Web community; however, from our point of view, they are
an inevitable part for putting the Semantic Web into practice. Transactions and
rollbacks of Semantic Web data operations should be possible, following the
well-known ACID properties (atomicity, consistency, independence, durabil-
ity) of database management systems (DBMS). Evolution and versioning of
ontologies are an important aspect; because ontologies usually are subject to
change (cf. [Peters and Oezsu, 1997, Banerjee et al., 1987, Stojanovic et al.,
2002al). As in all distributed environments, monitoring of data operations

3~ better description of this layer would be "Rule layer," as the Ontology layer already features a logic
calculus with reasoning capabilities. We here use the naming given by Tim Berners-Lee in his roadmap.

Towards Semantic Management 61

becomes necessary for security reasons. Finally, reasoning engines are to be
applied for the deduction of additional facts: as well as for semantic validation

Application Development for the Semantic Web
Ontologies serve various needs in the Semantic Web, such as storage or

exchange of data corresponding to an ontology, ontology-based reasoning or
ontology-based navigation. Building a complex Semantic Web application, one
may not rely on a single software module to deliver all these different services.
The developer of such a system would rather want to easily combine different
- preferably existing - software modules.

An example would be the domain ontology for an application supporting
research and academia [Oberle and Spyns, 2004, Spyns et al., 2002, Hartmann
and Sure, 20041. Such an application manages information about a university's
staff, their publications, students and courses. Its ontology can be easily ex-
pressed by Semantic Web languages and constructed by a corresponding editor
(cf. Figure 4.4). There will be properties of concepts that require structured
XML Schema data types [Biron and Malhotra, 20011 whose correctness can
be checked by a validator. A description logic reasoner is usually applied for
semantic validation of the ontology. An ontology store saves the ontology and
can be reused by a research and academia portal. The latter may exploit a rule-
based inference engine that is capable of handling large amounts of instances
and deduction of additional information by rules.'

Ontology Editor
APPLICATION Perwn

Portal
P

Graduate-Student Q(b AcadanicSfotl Fd
XML Schema

SOHWARE ~ ~ ~ l i d ~ t ~ ~ ** Ru d

MODULE xskdotenme
r r

C, ~r lhd(r~ wnon = tmduateStudent Ontology coopemtermv.xl <->
u AcodemicSfafl store coopemieswiMg,vJ

Figure 4.4. Information flow in the research and academia example.

4 ~ . g . , if cooperateswith is defined as a symmetric property in OWL DL between persons. A reasoner
should be able to deduce that B cooperateswith A, given the fact that A cooperateswith B.
5 ~ h e reader may note that we neglect the details of translating between logic languages for the sake of a
simple scenario.

62 SEMANTIC MANAGEMENT OF MIDDLEWARE

So far, such integration of ontology-based modules had to be done in an ad
hoc manner, generating a one-off endeavor, with little possibilities for re-use
and future extensibility of individual modules or the overall system.

The new situation requires an infrastructure that facilitates plug'n'play engi-
neering of ontology-based modules and, thus, the development and maintenance
of comprehensive Semantic Web applications. The aim is to facilitate the re-
use of existing modules, e.g., ontology stores, editors, and inference engines,
to combine means to coordinate the information flow between such modules,
to define dependencies, to broadcast events between different modules and to
translate between ontology-based data formats. We shall adopt the concepts
and technologies underlying common application servers in order to reach that
goal. The result is an Application Sewer for the Semantic Web (ASSW) extend-
ing common application servers by means of easier development of Semantic
Web applications. We build such an application server in Chapters 8 and 9.

1.2 Web Services in SmartWeb

SmartWeb - Mobile Broadband Access to the Semantic Web

Recent progress in mobile broadband communication and Semantic Web
technology is enabling innovative internet functionality that provides advanced
personalization and localization features. The goal of the SmartWeb project
is to combine these functionalities and to lay the foundations for multimodal
user interfaces to distributed Web services on mobile devices. The vision is to
exploit the Web as a knowledge base to answer a broad range of user questions.
The questions are asked by a human via a multimodal dialog system that com-
bines speech, gesture, and facial expressions for input and output. Spontaneous
speech understanding may be combined with the video-based recognition of nat-
ural gestures and facial expressions. Besides information-seeking dialogues,
SmartWeb aims to support task-oriented dialogues, in which the user wants
to perform .a transaction (e.g., buy a ticket for a sports event or program his
navigation system to find a souvenir shop).

SmartWeb is based on two parallel efforts in order to reach that goal. The
first effort is the Semantic Web providing the explicit markup of the content
of Web pages (cf. Section 1.1). Its contents may be exploited mainly for
information-seeking dialogues. The size and dynamic nature of the Web and the
fact that the content of most Web pages is encoded in natural language makes
this an extremely difficult task. Therefore, SmartWeb exploits the machine-
understandable content of Web pages for intelligent question-answering as a
next step beyond today's search engines. Since semantically annotated Web
pages are still very rare due to the time-consuming and costly semantic mod-
elling, SmartWeb is using advanced language technology and information ex-

Towards Semantic Management 63

traction methods for the automatic annotation of traditional Web pages encoded
in HTML or XML.

The second effort is the integration of Web services in the system which
allows task-oriented dialogs and user transactions. Multimodal user requests
may lead to automatic Web service discovery and invocation, and also to the
automatic composition, interoperation and execution monitoring of Web ser-
vices - although with a more or less confined set of Web services as we learn
below.

The context-aware user interface of SmartWeb supports the user in different
roles, e.g., as a car driver, a motor biker, a pedestrian or a sports spectator.
One of the demonstrators of the project is a personal guide for the 2006 FIFA
world cup in Germany that provides mobile infotainment services to soccer
fans, anywhere and anytime.

Another SmartWeb demonstrator is based on peer-to-peer communication
between a car and a motor bike. When the car's sensors detect aqua-planing,
for example, a succeeding motor biker may be warned by the system. The biker
can interact with the system through speech and haptic feedback; the car driver
can input speech and gestures.

The Role of Web Services

Figure 4.5 depicts a simplified view of the SmartWeb architecture. On the
user's side, we find the SmartWeb Client incorporated by a UMTS cell phone.
The client allows multimodal input, such as speech or browsing. The thus
generated dialogue, i.e., user questions, is transmitted to the SmartWeb Server.

Within the server, dialogues are processed and analyzed by the Semantic Me-
diator. It exploits a knowledge base to answer information-seeking dialogues,
which are structured according to an ontology. Semantically annotated Web
pages and text mining results from common pages are the initial sources of the
knowledge base. Basically, the Semantic Mediator has to deal with two cases:
(i) the answer to the dialogue is already formalized in the knowledge base and
(ii) the answer is missing or is incomplete. In the first case, a simple querying
of the knowledge base might lead to several answers stemming from different
sources with different timeliness and trustworthiness. Hence, the Semantic Me-
diator has to choose a suitable one according to corresponding algorithms. In
the second case, the Semantic Mediator has to acquire additional information
in order to answer the question. This can be achieved by applying reasoning on
the knowledge base. By doing so, the answer might be deduced from existing
facts. Otherwise, Web service access might help, e.g., by asking Google and
processing its results in natural language. If this step is successful, the answer
is asserted as an additional fact in the knowledge base.

The Web service Access module (cf. Figure 4.5) obtains answers to questions
which are not derivable from the knowledge base. In this case the Google Web

SEMANTIC MANAGEMENT OF MIDDLEWARE

-
Dialogue

4

SmartWeb
Client

SmartWeb Server

@ i;iiii
- route planning
- city guide

-,, - GPS geocode
. . .

Go~~gle

Web services

Figure 4.5. Simplified SmartWeb Architecture.

service might be exploited to complete the missing facts. Also, one of the
project partners, viz., T-Info, provides several Web services for mobility and
traffic inf~rmation.~ Examples comprise route planning functionality, a city
guide, GPS geocode services, temperature, UV radiation, air quality and many
more. They deliver very dynamic information, which is usually not asserted in
a database.

Although further Web services enabling user transactions (e.g., buying a
ticket) will be integrated in the system, this is a rather closed world. The obvious
way to implement the Semantic Mediator and Web service Access module is
to code which Web service has to be invoked given a specific query. For
instance, when the user asks for weather information, the WeatherCondit ion
service may deliver the answer. In addition, simple composition is necessary
if the Weathercondition service takes a GPS position as argument, but the
question talks about zip codes.

Statically coding which of the several Web services has to be invoked is a
very tedious task that leads to an inflexible application with high management
efforts. The application would have to be recoded whenever a service changes
or a new one should be integrated. Hence, it is be desirable to attach semantic
descriptions to the relevant Web services in a way that invocation, simple com-

6http: //services. t-inf o .de/soap

Towards Semantic Management 65

position and other management tasks can be automated. Here, we encounter
the typical trade-off between management and modelling efforts. Automation
does not come for free, but has to be bought by modelling all the Web services
to a certain extent. We solve the trade-off in the next section by discussing
typical use cases.

2. Use Cases
In order to approach the trade-off point mentioned at the beginning of this

chapter, it is necessary to ask and to answer the following questions from the
Introduction: who uses the semantic descriptions?, what are they used for?
and when do they occur? The answers are derived from use cases which are
embedded in the scenarios and split into application servers and Web services.
Additionally, the use cases serve as an input to Part I1 by answering which
aspects our ontology should formalize. The list below is neither exhaustive nor
are the individual use cases mutually exclusive because there is a large number
of use cases where semantic management may help the developer.

Question 1.1 Who uses semantic descriptions?

We see two major groups of users constituted by (i) software developers
and (ii) administrators. These two groups of users have the need to predict or
observe how software components and Web services interact, get into conflict,
behave, etc. It will be very useful for them to query a system for semantic man-
agement that integrates aspects from multiple deployment or WS* descriptions
- which has not been possible so far. As a third "group of users," we foresee
that applications may also exploit the querying and reasoning capabilities to
allow autonomous control of interaction. Thus, running components or Web
services constitute a third group. We consider the autonomous exploitation by
programmes a rather desirable side effect of our approach.

Question 1.2 What are the semantic descriptions used for?

We consider management tasks consisting of five basic categories, namely
fault, performance, configuration, security and accounting. They are introduced
in the definition of "network management" by the International Standards Or-
ganization (ISO), but general enough to be applied here, too. The bare essence
of fault management is monitoring in order to detect anomalies (faults) as soon
as they occur and taking the necessary corrective action. Pe~ormance man-
agement consists of assessing and controlling the efficiency and productivity
of the managed elements. ConJguration management is generally thought of
as tailoring a managed element so that it will operate in the desired way. The
aim of security management is to define who may perform which task and un-
der what conditions. Finally, accounting management is the task of providing
quantitative information of resource utilization. [Sturm and Bumpus, 19981

66 SEMANTIC MANAGEMENT OF MIDDLEWARE

Question 1.3 When are the semantic descriptions used?

We consider three different stages, viz., development time, deployment time
and run time.

Question 1.4 Which aspects should be formalized by our ontology?

On the one hand, we want to be able to automate management tasks covering
a broad range of aspects (such as security, policies, interface descriptions, etc.).
On the other hand, the complexity of the ontology has to be kept small to avoid
overburdening the developer. In addition, the answers to the Question 1.4 serve
as modelling requirements for building a suitable management ontology in Part
11.

2.1 Application Servers
The use cases below propose the facilitation of some typical application

server management tasks by a justifiable amount of semantic descriptions. That
means, we do not strive at full automation of all management tasks but approach
the trade-off between modelling and management efforts.

Library Dependencies and Versioning
Software libraries often depend on other libraries and a specific library can
contain several libraries at once. Given this information, semantic descriptions
can be exploited to locate all the required l ibrarie~.~ Furthermore, the user
might be notified when two libraries require different versions of a third one.
For instance, the multitude of versions of XML parsers cause a lot of trouble.
Semantic management could comprise reasoning with this kind of information
in order to make an educated suggestion or to display inconsistencies.

Who: Developer
What for: Configuration management
When: Development and deployment time
Which aspects: Libraries

Licensing
Similar to the library dependencies, we can describe licensing, trustworthiness
and quality. Including an external module in one's software has effects on the
licensing options. For instance, using external GPL licensed code prohibits

 h his idea is the basis of the RPM package manager: http://www.rpm.org/. Semantic management could
generalize this approach and integrate it with other tools for the developer.

Towards Semantic Management 67

distributing the bundle under a LGPL license. Along the same lines, I S 0
software certification or a security guideline of a government agency might
prohibit certain external components to be used in mission critical software.
In all of these cases, it would be useful to model development constraints and
reason with these and semantic descriptions to avoid problems.

Who: Developer
What for: Configuration and security management
When: Development time
Which aspects: Licenses

Capability Descriptions
Component capabilities adhering to standard interfaces can be made explicit to
the developer by component profiles, i.e., semantic descriptions of component
capabilities. For example, there is a lowest common denominator interface for
description logics reasoners that can be used by applications, such as ontology
editors. However, the behavior and capabilities of the specific reasoners used
can vary dramatically. For example, some reasoners support inferences with
instances (called ABox reasoning) others do not.

Who: Developer and Administrator
What for: Configuration management
When: Development and deployment time
Which aspects: Component profiles

Component Classification and Discovery
Given API's of a specific type, e.g., ontology stores, one will find different
implementations with essentially the same functionality. We suggest align-
ing the corresponding component profiles in application-specific component
taxonomies. This will allow the developer to discover implementations for a
certain taxonomy entry and to classify them.

Who: Developer
What for: Configuration management
When: Development time
Which aspects: Component taxonomy, semantic API description

Semantics of Parameters
Parameters and return types of methods are often implicitly encoded in the
respective names. Providing meaningful names is considered to be an impor-

68 SEMANTIC MANAGEMENT OF MIDDLEWARE

tant practice when developing software systems. However, it is also desir-
able to relate the names with concepts and associations of a common, agreed-
upon domain ontology. Different ontology stores will provide different names
for methods with comparable functionality (e.g., storeconcept 0 vs. add-
Concept 0). Just as the point mentioned before, this will allow more powerful
searches over a large unfamiliar API. These descriptions can even be used to
generate a sequence of method invocations in order to achieve a goal specified
[Eberhart, 20041.

Who: Developer
What for: Configuration management
When: Development time
Which aspects: Semantic API description

Automatic Generation of Web Service Descriptions
Development toolkits usually provide functionality for creating stubs and skele-
tons or for automatically generating interface metadata tL la java2wsdl. With an
entire set of new markup languages, such as WS-BPEL [Andrews et al., 20051
or OWL-S [Martin et al., 20041 emerging, tool support for these new lan-
guages is needed. Whereas WSDL [Christensen et al., 20011 tools can obtain
almost all of the required input directly from the source code, richer descrip-
tions in these languages require additional metadata. If the respective metadata
are already available within the system, automatically generated WS-BPEL or
OWL-S descriptions can be a side product of a unified framework.

Who: Developer and administrator
What for: Configuration management
When: Development, deployment and run time
Which aspects: Component profile, (semantic) API description

Access Rights
The access control mechanisms of application servers are based on users and
roles to whom access can be granted for certain resources and services. In
addition, components can be run using the credentials of the caller or those
of another user that runs the component on behalf of the caller. This is often
referred to as the authentication problem [Gray and Reuter, 19931. It is quite
evident, that access rights within a large application can be very complex (cf.
Example 2.1 on page 23). Semantic management could comprise assistance of
the administrator in suggesting suitable settings and in determining potential
flaws in the security design. We believe that formal reasoning over group

Towards Semantic Management 69

memberships or resources being accessed by processes running on behalf of
other users will prove to be valuable here.

Who: Administrator
What for: Security management
When: Development and deployment time
Which aspects: Access rights

Error Handling
Modern programming languages make heavy use of exceptions. Exceptions
are raised and propagated along the calling stack in order to be handled at the
appropriate level. In order to avoid the embarrassing situation that an exception
is not handled at all and simply passed to the user interface or business partner,
a consistency check can be put in place. Similar to the argument made in the
previous example, rules describing how exceptions are thrown, passed across
the calling stack and being caught or not can be applied in this case.

Who: Developer
What for: Fault management
When: Development time
Which aspects: API description (exceptions)

Transactional Settings
Ontology or RDF stores typically offer transactional recovery. This notion
is extended to general software components (e.g., EJB), which access transac-
tional resources. Methods can be declared to not support transactions, to initiate
a new transaction or to participate in the caller's transaction. Again, a chain
of calls across many components can contain inconsistent settings, such as a
component which requires a transaction calling one that does not support trans-
actions. A formalization of invocations and the possible transactional settings
can be applied here.

Who: Developer
What for: Fault management
When: Run time
Which aspects: Component profile, workflow information

Secure Communication
Confidential data might be made accessible to business partners only. Settings
on the application server typically determine that a digital signature has to be

70 SEMANTIC MANAGEMENT OF MIDDLEWARE

checked before the request is passed along and that a component can only be
bound to a secure communication line or protocol. Similar to the arguments
made above, semantic management should be able to detect that a confidential
resource is accidentally made accessible via a non-encrypted communication
channel.

Who: Developer
What for: Security management
When: Development, deployment and run time
Which aspects: Component profile, workflow information

2.2 Web Services
The use cases below propose the facilitation of some typical Web service man-

agement tasks by a justifiable amount of semantic descriptions. The research
field of "Semantic Web Services" (cf. related work in Chapter 11, Section 3)
addresses very similar use cases. However, the approaches in this field usually
aim at full automation of all management tasks. In contrast, we approach the
trade-off point between modelling and management efforts.

Analyzing Message Contexts
Message passing plays the central role for Web services. A message sent to a
service can in turn trigger several other messages being sent out on behalf of
the initial message. Messages may carry a context with information about the
sender, the sender's credentials, or the message's transactional context. During
the deployment of a service, the administrqtor makes important choices as to
how messages are propagated. These include whether the sender information
is carried along or whether the new message is sent on behalf of a new user
(also called the run-as paradigm). Similar choices are made with respect to the
transactional settings. Services can choose to always open a new transaction,
require a prior transactional context, or open a new transaction when needed. In
a scenario such as Smartweb, where networks of direct and indirect invocations
are possible, it is crucial to be able to detect configuration errors. As an example,
consider a situation where a service switching to user context X and calling Y
does not have user X in its access control list.

Who: Administrator
What for: Security and configuration management
When: Deployment time
Which aspects: Service profile, workflow information, access rights

Towards Semantic Management 7 1

Selecting Service Functionality
There are several approaches to automatized runtime service matching in the
area of Semantic Web Services, e.g., [Li and Horrocks, 2003, Paolucci et al.,
2002a, Paolucci et al., 2002bl. However, it remains to be seen whether the
problems related to semantic interpretations of documents can be solved in the
full generality needed for real-life interactions between corporations.

Instead, we want to provide developers with some tool support in brows-
ing and selecting an appropriate service at development time. The canonical
approach to this task is a taxonomic categorization of services together with se-
mantic descriptions of their capabilities. Naturally, searching for services of a
certain capability class C should also yield all services classified as instances of
subclasses of C. In the case of our SmartWeb scenario, the Weathercondition
service would belong to the category of "Environment" services, for instance.

Who: Developer
What for: Configuration management
When: Development time
Which aspects: Service taxonomy, semantic API description

Policy Handling
Policies play an increasing role, as demonstrated by the recent WS-Policy [Ba-
jaj et al., 20041 proposal. The idea of a policy is to lay out general rules and
principles for service selection. Thus, rather than deciding whether an invoca-
tion is allowed on a case by case basis at run time, one excludes services whose
policy violates the local policy at development time. The major benefit is that
policies can be specified declaratively. The administrator can specify policies
much in the same way as writing an SQL query, i.e., writing down what should
be done instead of how to implement it.

This use case does not aim at fully automated policy matching at run time, as
we think that the full generality of policy matching imposes further problems
that remain to be solved. Let alone the lack of WS-Policy engines so far. Instead
we propose to apply semantic modelling in order to make policy handling more
convenient for the developer. As an example, consider a large WS-BPEL work-
flow where checking for external task service invocations which are associated
with a policy remains a tedious and manual task. Semantic descriptions can
help to notify the developer if an external Web service in the BPEL workflow is
associated with a policy, for instance. This situation is depicted in Example 2.5
on page 30, where the WS-Policy document states that a credit card validation
service is only invocable with specific authentication methods.

Who: Developer, System

72 SEMANTIC MANAGEMENT OF MIDDLEWARE

What for: Security management
When: Development and run time
Which aspects: Policies

Detecting Loops in Interorganizational Workflows
Web services based applications may use asynchronous messaging, bringing
upon quite complex interaction protocols between business partners. Current
workflow design workbenches only visualize the local flow and leave the or-
chestration of messages with the business partners up to the developer. We
believe that sufficient information is available in machine-readable format so
that semantic management can assist the developer in this task. For instance,
the structure of the local flow can be combined with publicly available abstract
flows of the partners in order to detect loops in interorganizational workflows
that might lead to non-termination of the system.

As shown in the bioinformatics domain [Lord et al., 20041, automated com-
position of workflows is likely to be inappropriate in most cases. Hence, we
propose to support the developers in their management tasks and not to replace
them.

Who: Developer
What for: Fault management
When: Development time
Which aspects: Workflow information

Incompatible Inputs and Outputs
Type checking is not as straightforward anymore, using loosely coupled services
operated by a large number of organizations. Furthermore, the interpretation
of a B2B term such as 'price' might be different, even though syntactically it
refers to an agreed-upon XML Schema type. For instance, different, possibly
international Web services used in SmartWeb might have different assumptions
about the currency and taxation details. Semantic management, which could
automatically compare communication inputs and outputs according to a more
detailed ontology, would help to prevent unexpected behavior here.

Note that a developer who uses Web services wants to check at development
time whether some incompatible configuration exists. While a 100% solution,
such as required for full automation, will remain unfeasible in most cases,
ticking of 80% of problematic situations by semantic support is a very desirable
feature of semantic management.

Who: Developer

Towards Semantic Management

What for: Configuration management
When: Development time
Which aspects: Semantic API description

Relating Communication Parameters
This use case is again motivated by e-business policies. Let us assume that every
Web service provider in SmartWeb must be IS0 9000 certified. Enforcing this
policy requires correlating communication paths with information about the
organizations operating the communication endpoints. Another example would
be a policy stating that confidential information should only be sent across a
secure communication channel. In this case, knowledge about message payload
types, such as credit card information, must be connected with the properties
of the underlying transport.

Who: Developer, Administrator
What for: Configuration management
When: Development and deployment time
Which aspects: Service profile

Monitoring of Changes
A system no longer being under the tight control of a single organizational
unit will definitely be prone to service versioning issues. Updating a single
part already requires close cooperation between the parties involved and this
will, without a doubt, be much harder in Web services based applications.
Consequently, semantic management should provide support for this issue by
monitoring the providers' service interface definitions, security or transactional
settings.

Who: Developer
What for: Configuration management
When: Development time
Which aspects: API description

Aggregating Service Information
Services will often be implemented based on other services. A service provider
publishes information about its service. This might include service level agree-
ments indicating a guaranteed worst-case response time, the cost of the service,
or average availability numbers. The service requestor, in this case a composite
service under development, can collect this information from the respective ser-

74 SEMANTIC MANAGEMENT OF MIDDLEWARE

vice providers. In turn, it offers a service and needs to publish similar numbers.
We envision semantic management to support the developer and administrator
with this task by providing a first cut of this data by aggregating the data gath-
ered from external providers. For sequential invocations, cost and time must be
added. If services are invoked in parallel, cost is added and the time will be the
maximum time one has to wait for an external call. Consequently, the respective
queries must consider the local program or flow structure when performing the
aggregation. The computation results could be used as default values, which can
be overridden manually by the administrator (cf. also [Cardoso et al., 20041).

Similar to the statements given in [Lord et al., 20041, we argue that full au-
tomatic generation of such data will probably yield unwanted and inappropriate
results. We see the computation results as an estimate which can be overridden
manually by the administrator.

Who: Administrator
What for: Accounting management
When: Deployment time
Which aspects: Service profiles (quality of service information)

Quality of Service
While the previous use case was based on data gathered from service providers,
one might want to obtain his or her own statistics on the reliability and avail-
ability of business partners' IT infrastructure. Assuming the system is aware
of potential endpoints implementing a required service, these endpoints can be
pinged regularly. If an actual request arrives, aggregated availability informa-
tion can be used to direct subsequent requests to one or the other third party
service.

Likewise, a provider needs to make sure it offers an adequate service level
for its customers. In case of performance bottlenecks, it might have to make
an educated decision on which jobs to grant higher priority and which job to
drop or decline. Existing service level agreements and, of course, the respective
penalties play an important role here.

The up and coming technology of virtualization - currently provided by VM
Ware and Microsoft Virtual Server - makes this issue much more important.
Virtual machines, prepared to provide a certain service, can be started, stopped,
suspended or even cloned on the fly. Thus, one can make quick and flexible
decisions on what service to provide on the available bare metal servers at one's
disposal. With the base technology in form of virtualization being available, it
is important to provide the necessary intelligence for controlling the technology.

Towards Semantic Management 75

Obviously, new developments in the area of Grid Computing further empha-
size this point, since the grid will provide new mechanisms for scheduling tasks
and for outsourcing IT services in general.

Who: Administrator, System
What for: Performance management
When: Run time
Which aspects: Service profiles (quality of service information)

3. Summary
In this chapter we have proposed the semantic management of software com-

ponents and Web services that trades off between modelling and management
efforts (Main Question I: How tofind a good trade-off between modelling and
management efforts?). The trade-off point has been approached by identifying
a set of use cases. Each of them responded to the Questions 1.1 who uses the
semantic descriptions?, 1.2 what are they used for?, and 1.3 when do they occur?
The use cases propose the facilitation of some typical management tasks by a
justifiable modelling efforts. The modelling requirements of the use cases also
give us clear indications of what concepts a suitable management ontology must
contain (Question 1.4: Which aspects should be formalized by our ontology?).
The organization of these concepts in an appropriate management ontology is
the subject of Part 11.

PART I1

DESIGN OF A MANAGEMENT ONTOLOGY

Chapter 5

ANALYSIS OF EXISTING ONTOLOGIES

In the previous chapter we have approached the trade-off between modelling
and management efforts. We have identified use cases where semantic de-
scriptions of components and services can be exploited to automate some of
the typical management tasks. The use cases in Chapter 4, Section 2 let us
derive a set of modelling requirements for choosing the aspects our ontology
should formalize. Regarding the application server use cases starting on page 66
we have derived the following modelling requirements: (i) libraries, licenses,
component profiles, component taxonomies, API descriptions, semantic API
descriptions, access rights and workjow information of software components.
Regarding the Web services use cases starting on page 70, we have to model ser-
vice profiles, service taxonomies, access rights, policies, workjow information,
API descriptions, as well as semantic API descriptions of Web services.

The modelling requirements are the input to this part of the document which
is concerned with the Main Question I1 from the Introduction: How to build a
suitable management ontology? Our goal is to arrive at a high-quality manage-
ment ontology with reference, heavyweight and core characteristics (cf. Figure
5.1). We opt for a reference ontology because our first investigation of the
domain of software components and Web services in Chapter 2, Section 3 al-
ready revealed that a careful and rigorous ontological modelling is necessary.
We encountered fundamental ontological questions that demand a concise ex-
planation of concepts such as software component or Web service. In turn,
such a concise explanation typically requires heavyweight expressiveness to
approximate the intended models as closely as possible. Finally, the ontology
should be as specific as possible, but should not reflect the idiosyncracies of a
concrete platform. In this way, we facilitate reuse in concrete platforms because
it is expected that concepts and associations can be specialized to capture the
platform details. This requirement coincides with core specificity.

SEMANTIC MANAGEMENT OF MIDDLEWARE

Figure 5.1. The goal of Part I1 is to design a management ontology with reference, heavyweight
and core characteristics (cf, classification in Chapter 3, Section 2).

Before modelling a management ontology from scratch, it is desirable to
check if there are existing ontologies that we might reuse for our purpose (Ques-
tion 11.1 : Can an existing ontology be reused for our purposes?). This chapter
analyzes two commonly built ontologies. In Section 1 we review one of the
earliest and most prominent Web service ontologies, viz., OWL-S. Section 2
talks about our own initial ontology of software components - one of the first
efforts to semantically enhance application servers. It uses OWL-S as a basis,
but extends and adopts it to model the idiosyncracies of software components.
Finally, Section 3 inspects both ontologies and discusses their problematic as-
pects with respect to the ontology quality criteria we introduced in Definition
3.8 on page 41. A first conclusion is that both ontologies are a big step forward
and that their reuse is possible in principle. However, both ontologies exhibit
shortcomings that stand in conflict with our goals of having a high-quality, ref-
erence and heavyweight ontology. We claim that their shortcomings are typical
for commonly built ontologies. A second conclusion is that most of the prob-
lems could have been avoided if a foundational ontology had been used as a
modelling basis.

Parts of this chapter have been published in conference proceedings. The
introduction to OWL-S is taken from the DAML Services initiative [Martin
et al., 20041. The initial ontology of software components is taken from [Oberle
et al., 2003b, Oberle et al., 2003c, Sabou et al., 20041. The analysis of their
problematic aspects was done in [Mika, Oberle et al., 2004aI.

Analysis of Existing Ontologies 8 1

1. OWL-S
OWL-S has been an initiative of the Semantic Web community to enable

automatic discovery, invocation, composition, interoperation and monitoring
of Web services through their semantic descriptions [Martin et al., 20041.'
At the heart of this effort lies an ontology formalized in the OWL language
[McGuinness and van Harmelen, 20041. Its structuring is motivated by the need
to provide three essential types of knowledge about a service, each characterized
by the question it answers:

What does the service provide for prospective clients? The answer to this
question is given in the Ser~iceProfile.~ It is used to advertise the service.
The intention is to allow an agent to determine whether the service meets its
needs. This form of representation includes a semantic description of inputs
and outputs, preconditions and postconditions, as well as explanations in
natural language. It allows associating the service with given classification
and product schemes (e.g., the NAICS~ and UNSPSC~ categories). As an
example, we might semantically describe a Web service for validating a
credit card by stating that its input is a credit card number and its output is
the result of the validation. Both would be concepts of an according domain
ontology.

How is it used? The answer to this question is given in the ServiceModel. It
tells a client how to ask for the service and what happens when the service is
carried out. For composed services (i.e., services invoking other services),
this description may be used by an agent to coordinate the activities of
the different participants during the course of the service enactment or to
monitor the execution of the service. If our credit card validation service
is composed of other services, the ServiceModel allows us to describe
when and how the other services are invoked. This comes close to typical
workflow descriptions made up of control constructs such as if-then-else,
while, etc.

How does one interact with it? The answer to this question is given in the
ServiceGrounding. It specifies the details of how an agent can access a
service. Typically a grounding specifies a communication protocol, message

'OWL-S was formerly called DAML-S as it is an outcome of the DAML program. After the standardization
of the Web Ontology Language (OWL), it was renamed OWL-S (cf. ht tp: //www.daml . org/services/
owl-s/).
2 ~ h e reader may note that we use a sans serif font to denote names of ontologies, concepts and associations
throughout Part 11.
3 ~ o r t h American Industry Classification System (NAICS), cf. ht tp: //www . census. gov/epcd/www/
naics.htm1
4~ni ted Nations Standard Products and Services Code (UNSPSC), cf. ht tp: //www . unspsc . org/

82 SEMANTIC MANAGEMENT OF MIDDLEWARE

formats and other service-specific details, such as port numbers. At the
moment, there is only one grounding to align the semantic description with
WSDL interface descriptions. In our example, we would map the credit card
number as semantically described input to the respective WSDL parameters.

The ontology modules ServiceProfile, ServiceModel and Service-
Grounding correspond to the three types of knowledge introduced above. Each
module features a rich set of concepts and associations. Ontology modules are
different from ontologies in that they depend on other ontologies or on other
modules. An ontology module MI depends on M2 if it specializes concepts
of M2, has associations with domains and ranges to M2, or reuses its axioms.
The three modules of OWL-S are linked to the Service module via presents,
describes and supports associations. As depicted in Figure 5.2, the Service
module acts as a container holding together profile, model and grounding in-
f~ rmat ion .~ It basically consists of a concept of the same name which is to be
instantiated for any service description.

I I . /

Figure 5.2. The OWL-S Service ontology module as UML class diagram. Classes represent
concepts and arrows represent associations. Specializations of ServiceProfile, ServiceModel
and ServiceGrounding are placed in their corresponding ontology modules.

presents , nl' , , 4 SUP^ ,

The details of profiles, models and groundings may vary widely from one
type of service to another. But each of these three service perspectives provides
an essential type of information about the service. There are several interesting
design principles underlying OWL-S [Sabou et al., 20041:

Service

v

Layering of Descriptions OWL-S is intended to provide a layer on top of
existing WS * descriptipns. The ServiceGrounding module provides a
mapping between WSDL and OWL-S, thus facilitating flexible associations
between them. For example, a certain semantic description can be mapped to
several WSDL descriptions if the same semantic functionality is accessible
in different ways. The other way around, a certain WSDL description can

/
\ I

prescntedBy descr ed by suppo edBy
desc ibes

S ~ e visualize ontologies via UML class or object diagrams throughout the document.

ServiceProfile ServiceModel ServiceGrounding

Analysis of Existing Ontologies 8 3

be mapped to different semantic descriptions offering different views of the
same service.

Core vs. Domain Knowledge The second principle which underlies the de-
sign of OWL-S is the separation between core and domain knowledge.
OWL-S can be considered a core ontology offering a set of primitives to
semantically describe any type of Web service. These descriptions can be
enriched with domain knowledge specified in a separate domain ontology
module (e.g., by specializing the concepts of the ServiceProfile in a do-
main profile). This modelling choice allows using the set of primitives
across several domains just by varying the domain knowledge.

Modularity Another feature of OWL-S is the partitioning of the description
over several ontology modules, as we have learned before. There are several
advantages of this modular modelling. First, since the description is split
up modules it is easy to reuse specific parts. Second, service description
becomes flexible as it is possible to specify only the part that is relevant
for the service (e.g., ServiceModel and ServiceGrounding can be omit-
ted). Finally, OWL-S descriptions are easy to extend. If concepts are not
detailed enough for a specific application domain one can specialize them
in a separate ontology module.

In essence, we could reuse and extend OWL-S to capture at least the man-
agement aspects of Web services. OWL-S was a big step forward and features
design principles that are suitable also for our use. Despite the advantages,
however, OWL-S has several problematic aspects that endanger our goals of
having a high-quality, reference and heavyweight ontology. Before discussing
the problematic aspects in Section 3, we have a closer look at our own initial
ontology of software components which has been based on OWL-S.

2. Initial Ontology of Software Components
In this section we briefly describe our initial ontology of software components

for the semantic enhancement of an application server. In [Oberle et al.,
2003b, Oberle et al., 2003c, Sabou et al., 20041 we derived the following
ontology requirements based on scenarios:

R1 Interface Description and Code Details The ontology should contain
means to model the interface description of software components, as well
as relevant code details (version, required libraries, etc.).

R2 Component Profiles The ontology should contain means to model a soft-
ware component's profile, i.e., the semantics of inputs and outputs in terms
of the ontology, their classification according to a given taxonomy or infor-
mation about the component provider.

84 SEMANTIC MANAGEMENT OF MIDDLEWARE

R3 Consideration of Existing Efforts It was our intention to consider exist-
ing ontologies and reuse them whenever possible. If the ontology resembles
a well-known one, we might keep the learning curve low.

R4 Domain Independence The ontology should be reusable over a wider
range of domains; therefore we should separate core and domain specific
concepts.

In line with requirement R3, we have used OWL-S as a starting point for
our ontology. The design principles underlying OWL-S fit our purposes nicely,
e.g., its separation of core and domain knowledge corresponds to requirement
R4. Below we discuss the resulting ontology design. We have reused three of
the four ontology modules OWL-S introduced, adapted them for our purposes
and added further modules. Figure 5.3 compares both ontologies.

Specificity

T

1 piq py
Process Grounding

b I
\ I
1 v
\
\ WSDL
\

Software

-.
'--

Grotrnding
I

I I
I I Ontology 0 WL-S Initial Onlology of Sofhvore Componenls

Figure 5.3. The ontology modules of OWL-S in comparison with the modules of the initial on-
tology of software components as UML package diagram. Packages represent ontology modules
and dotted arrows represent dependencies between modules. An ontology module M1 depends
on Mz if it specializes concepts of Mz, has associations with domains and ranges to M2 or
reuses its axioms. WSDL is not represented as package because it is not an ontology module.

Softwarecomponent This module is similar to OWL-S Service. However,
we performed some changes: (i) We have renamed the Service concept to
Softwarecomponent, as components are the software building blocks to
be described. (ii) We have excluded the link to the ServiceModel module,
since we are not interested in workflow information. (iii) We have replaced
the ServiceGrounding by the newly introduced IDLGrounding ontology
module which provides a mapping to components' interface descriptions.

Analysis of Existing Ontologies 85

ComponentProfile We have reused the OWL-S ServiceProfile module and
renamed it ComponentProfile. It allows specifying the specific character-
istics of a Softwarecomponent. In order to grasp the semantics of inputs
and outputs we have added links to the APlDescription module that groups
the information used to describe an API and is separated in a module of the
same name. We separated it because we expect that components are able to
reuse API descriptions (much more than the remaining profile information).

APlDescription As discussed above, the APlDescription module comple-
ments the ComponentProfile by semantically describing the functionality
offered by methods of API's and for classifying API types. In essence, the
module introduces concepts such as API, Method, Input and Output and
links them with associations. They can be specialized in terms of domain
ontology concepts (see below).

IDLGrounding The IDLGrounding module provides a mapping between the
APlDescription and the interface description captured by the IDL mod-
ule. Thus, it resembles the OWL-S ServiceGrounding that maps between
a semantic service description and existing WSDL interface descriptions.
The mapping is straightforward: concepts InterfaceGrounding , Method-
Grounding, InputGrounding and OutputGrounding map between respec-
tive concepts from the APlDescription and IDL modules.

Implementation This module contains implementation level details of a
component and, thus, responds to requirement R1. There are two aspects
of the implementation: (i) CodeDetails that describe characteristics of the
code, such as the class that implements the code, the required libraries or
the version of the code. All these aspects are modelled as associations of
the CodeDetails concept. (ii) The interface description. The name of the
methods and their parameters are modelled using the module presented next
(IDL).

IDL We have formalized a small subset of the IDL (Interface Description Lan-
guage [Object Modelling Group, 20021) specification into an ontology mod-
ule that allows describing signatures of interfaces. The Interface concept
corresponds to a described interface. It features an association called has-
Operation which points to an Operation instance. Each Operation can
have a set of (input) parameters of a certain type. Also, each Operation
returns an OperationType.

Domain Ontologies We can build domain ontologies that specialize two of
the modules presented above. By isolating domain knowledge in separate
modules, we conform to requirement R4 (Domain Independence). On the
one hand, DomainProfiles may distinguish several categories of software

86 SEMANTIC MANAGEMENT OF MIDDLEWARE

components and propose a set of characteristics for each category. These
characteristics can be used as a framework for comparing components. On
the other hand, DomainAPlDescriptions may introduce a set of common
API's and methods. For example, one can declare a DatabaseAdapterAPl
concept and define it as providing a retrieveData method and a storeData
method. The intention is that such information allows performing a flexible
search over the existing API's at development time.

Table 5.1 shows the relationship between requirements and ontology mod-
ules, confirming the major influence that these requirements had on our design.
Much like OWL-S, we could reuse and extend this ontology to capture at least
the management aspects of software components. However, OWL-S features
several problematic aspects that endanger our goals of having a high-quality,
reference and heavyweight ontology. It does not come as a surprise that our
initial ontology of software components inherits similar problematic aspects as
OWL-S because it is based on OWL-S. We elaborate on the problematic aspects
in the following section.

Table 5.1. Dependencies between requirements and ontology modules.

C
C

V)
aJ .-
0

R3 Consideration of existing efforts

3. Problematic Aspects
This section identifies and illustrates some of the problematic aspects of

OWL-S and our initial ontology of software components from the perspective
of the ontology quality criteria introduced in Definition 3.8 on page 41. As the
latter is derived from the first, the problems that the two exhibit are similar.

For each of the four problematic aspects, viz., conceptual ambiguity, poor
axiomatization, loose design, narrow scope, we present examples and suggest
improvements. The conclusion is that many problems could have been avoided
by exploiting a high-quality foundational ontology as a modelling basis.

Analysis of Existing Ontologies 87

3.1 Conceptual Ambiguity
When it is difficult for users to understand the intended meaning of concepts,

the associations between these concepts, as well as how they relate to the mod-
elled entities, we speak of conceptual ambiguity of an ontology. The reason
for conceptual ambiguity in our case is that the underlying logical theory is
not complete enough. Furthermore, some concept definitions are too precise
(despite the fact that the ontology is not precise enough in general, as we learn
in 3.2 and 3.3).

Examples. Conceptual ambiguity in OWL-S particularly affects the notion of
a service which is introduced in [Martin et al., 20041 as follows: "By 'service'
we mean Web sites that do not merely provide static information, but allow
one to effect some action or change in the world, such as the sale of a product
or the control of a physical device." Later, we read that "any Web-accessible
program/sensor/device that is declared as a service will be regarded as a service."

However, neither of these definitions is formalized since neither the concept
of a "Web site" nor the "Web appears in the ontology. This is where OWL-
S is not complete enough, i.e., its vocabulary lacks terms used in the natural
language definition. Instead, the notion of a service is characterized solely by
its relationship to a number of ServiceProfiles, at most one ServiceModel
and any number of ServiceGroundings, which is not sufficient to understand
the concept of Service considered by OWL-S. This prevents us from consider-
ing alternative ServiceModels, or from evaluating the relationship between a
ServiceModel required by a customer's guideline, or by a legal regulation and
the one underlying the provider's system, for instance. Thus, OWL-S actually
excludes intended models in this case, making it too precise in terms of our
ontology quality criteria (cf. Definition 3.8 on page 41).

The debates about the intended meaning of terms both within the OWL-S
coalition and in public mailing lists6 were plentiful. The reason is that terms
such as Web service and closely related terms (e-Service, Service, etc.) typically
suffer from overloading. In our search for possible formalizations, we found a
variety of definitions emphasizing different aspects of a service [Gangemi et al.,
2003bl: offering functionality (usefulness for a specific task) or interoperability
using standards or providing an interface to an existing system. We also refer
the reader to the work of [Baida et al., 20041, which compares and contrasts
the definitions used in the business literature, in software engineering and in
information sciences.

In our initial ontology of software components we find a similar dilemma
regarding the plethora of meanings and definitions of terms such as component,

%f. http: //WWW. dam1 . org/services

8 8 SEMANTIC MANAGEMENT OF MIDDLEWARE

software component or software module. The ontology fails to convey its
intended meanings of such terms and leaves the interpretation to the ontology
user.

Suggested Improvement. Even if there are several ways to formalize con-
cepts such as service or component, using a foundational ontology as a mod-
elling basis would allow comparison between alternative definitions and foster
discussion about alternative conceptualizations. Using a foundational ontol-
ogy as a modelling basis means relating the concepts and associations of an
ontology to the basic categories of human cognition investigated by philoso-
phy, linguistics or psychology. This prompts the ontology engineer to sharpen
his notions with respect to the distinctions made in the foundational ontology.
What is typically gained is an increased understanding of one's own ontology.

3.2 Poor Axiomatization
Both OWL-S and the initial ontology of software components are typical ap-

plication ontologies, i.e., they are to be used at run time for reasoning purposes.
Hence, it is important that each concept is characterized by an axiomatization
in order to support meaningful inferences. Unlike the problem mentioned in
the previous section, poor axiomatization reflects the lesser problem when the
definition of concepts is clear, but axiomatization in the ontology itself needs
improvement (in order to make it more precise). In particular, we believe that
the level of axiomatization in OWL-S needs to be raised if it hopes to support
the complex reasoning tasks put forward by its coalition.

Examples. In both ontologies there is no firm concept or association hierar-
chy. That means that most concepts and associations are direct subconcepts of
the top level concept (ow1:Thing) or association (owl:Property), and that sev-
eral associations declare ow1:Thing as their domain or range. In essence, there
is not much more than the concept hierarchy and domain and range restrictions.
Therefore, reasoning is limited to subsumption checking and domain and range
inferencing, although further reasoning could be usefully employed.

To give a concrete example: ControlConstructs in OWL-S are used to de-
fine how composite processes are combined together. Typical specializations
are Sequence, Split, Choice or If-Then-Else. The components associa-
tion relates ControlConstructs to lists or bags of further ControlConstructs
or invocations of other processes. In OWL-S, the components association is
described merely as a specialization of ow1:Property with adomain of Control-
Construct. It would be desirable to concisely axiomatize this association in
order to support more meaningful consistency checks. We could axiomatize
its mereological and temporal properties, e.g., being a functional and temporal
proper part of a ControlConstruct. Both properties could be further charac-

Analysis of Existing Ontologies 89

terized with formal restrictions on its application to other basic concepts, such
as objects or events.

Suggested Improvement. The level of axiomatization can be increased by
using a foundational ontology as a modelling basis. By specializing concepts of
the foundational ontology, its extensive axiomatization is automatically inher-
ited. It also promotes reuse by highlighting commonalities, which especially
helps to reduce the proliferation of associations that is typical for application
ontologies.

As an example, foundational ontologies typically incorporate precise theories
for plans, formalizing constructs that are directly comparable to the Control-
Constructs of OWL-S, but provide a higher level of axiomatization. Such
a predefined theory could be leveraged in our case. Higher axiomatization
can also be leveraged by the links to a theory of time - another theory often
included in foundational ontologies - for describing constraints on temporal
relations between process elements when they are executions of a plan. OWL-S
would also need such an ontology of time. Then, it would be natural to adopt
or reference an existing ontology instead of creating an ontology from scratch.

3.3 Loose Design
A further problematic aspect from an ontologist's point of view is the loose

design of both ontologies. The reason for loose design is, amongst others,
inherited by the limitations of the representation language's expressiveness,
i.e., the ontologies are not precise enough.

At the heart of this problem lies the fact that both ontologies try to provide
descriptions of components and services to support a number of different tasks
(e.g., component or service discovery, composition, invocation). Besides the
functional dimension, such descriptions should be contextualized to represent
various points of view, possibly with different g r a n ~ l a r i t ~ . ~ Most of these views,
however, are overlapping in that they concern some of the same attributes of a
component or service.

A straightforward modularization in such cases results in an entangled ontol-
ogy, where the placement of specific knowledge becomes arbitrary and intensive
mapping is required between modules. This phenomenon is well described in
object-oriented design, where the notion of aspects [Elrad et al., 20011 was
recently proposed to encapsulate concerns that cross-cut the concept hierarchy
of a software.

7 ~ h e OWL-s specification mentions the ability to use the Serviceprofile for providing such views. However,
no actual constructs are provided to map them to possible service executions or to each other.

90 SEMANTIC MANAGEMENT OF MIDDLEWARE

Examples. A case in point is the application of attribute binding in OWL-S.
The construct of attribute binding is necessary in OWL-S to express, for exam-
ple, that the output of a process is the input to another process or that the output
of a composite process is the same as the output of one of its subprocesses. In
programming, such equivalences are expressed by the use of variables. Vari-
ables are governed by the rules of scoping, which define the boundaries of
commitment.

Since OWL lacks the notion of variables, attribute binding is expressed by the
Binding concept which is attached to a Process (cf. Figure 5.4). The Binding
contains instances of the valueof concept. The valueof concept points to a
Process and to one of its inputs or outputs via the fromProcess and theVar
associations, respectively. For example, in case of two processes A and B where
B takes the output of A as an input, the Binding would point to the Input of
B via toparam. In addition, a corresponding valueof instance would point to
the Process A and the Output of A.

The reader may note that the intended meaning of the entire construct,
namely, the equivalence of B's input and A's output, is not encoded in the ax-
iomatization. This is explained by the lack of expressiveness of the description
logic used.

Figure 5.4. The representation of attribute binding in OWL-S as UML object diagram. Concept
instances are represented by objects and instantiated associations by object relations.

I

The representation of attribute binding is only one example where we find
modelling artifacts in OWL-S. Modelling artifacts are concepts and associations
that do not bear ontological meaning, but are introduced because of unfortunate
ontology design or because of limitations of the representation language.

A closer look at our initial ontology of software components also reveals
the existence of modelling artifacts. For example, we can find the concept

Process B Binding

Analysis of Existing Ontologies 91

Parameter two times. One is introduced in the IDL module for modelling the
interface description. Another is introduced in the APlDescription module
for its semantic description. Both model the same information object, yet in a
different context. The concepts Method in the APlDescription and Operation
in IDL demonstrate that this problem is not limited to equally named concepts.

Suggested Improvement. The use of contextualization as an ontology design
pattern would allow us to move from a monolithic description to the represen-
tation of different, possibly conflicting views with various granularity. Some
foundational ontologies incorporate such design patterns or offer them as ad-
ditional theories. They provide the basic primitives of context modelling such
as the notion of roles, which allows us to talk about inputs and outputs on the
abstract level, i.e., independent of the objects that play such roles, for instance.

Using the ontology design pattern of contextualization results in a much more
intuitive representation of attribute binding, with clearly defined semantics and
scoping. Inputs and outputs can be modelled as functional roles, which serve
as variables in our ontology. A single object - for example, a physical book
- can play multiple roles within the same or different descriptions, and, thus
it is natural to express that the given book is output with respect to one process,
but input to another. Moreover, it is easier to represent the requirement that
the input of a process has to be played by the same instance as the output of
another process by putting constraints on the objects (and not the process or
task) which play these roles (however, the expressiveness required is the same
and, therefore, goes beyond the expresiveness of OWL DL).

3.4 Narrow Scope
Web services may carry out operations to support a real-world service, e.g.,

the ordering of goods. Thus, Web services exist on the boundary of the world
inside an information system and the external world. Functionality, which is an
essential property of a service, then arises from the entire process that comprises
computational, as well as real-world activities. Web service descriptions are
thus necessarily descriptions of two parallel worlds. In an information system,
the world consists of software manipulating (representations of) information
objects. Activities are sequenced by computational processes. Meanwhile in
the real world, goods are being delivered to their destinations. The connec-
tion between these worlds is that some of the information objects represent
real-world objects. Also, computational activities comprise part of the service
execution in the real world. For example, an order needs to be entered by the
Web agent into an information system, so that a warehouse knows which goods
to deliver to a given address.

The scope of OWL-S needs to be extended to represent real-world services
that naturally cross the lines between information systems and the physical

92 SEMANTIC MANAGEMENT OF MIDDLEWARE

world. While OWL-S acknowledges this aspect of services, it is unclear how a
distinction could be made between the objects and events within an information
system (regarding data and the manipulation of data) and the real-world objects
and events external to such a system.

Such a narrow scope is a result of the ontology not being complete and
accurate enough. Although the case of real-world activity descriptions is of
less relevance for software components, narrow scope is a problem in both
ontologies.

Examples. It is hard, if not impossible, to distinguish among a physical object
(e.g., a credit card), an information object (e.g., a credit card number) and a rep-
resentation of such information using a specific description system (e.g., a string
encoding) in OWL-S. In one of its use cases,8 we find a concept CreditCard-
Type, directly inherited from owl:Thing and defined as an enumeration con-
sisting of Mastercard, AmericanExpress, VISA and Discovercard. The
interpretation is left to the ontology user, whether it is the physical or the infor-
mation object that is modelled.

We can find a very similar example in our initial ontology of software compo-
nents, where a concept User is specialized directly from the top-level concept.
One can only guess whether it is the natural person, a role played by the natu-
ral person, or his or her informational counterpart. It would be worthwhile to
explicate such differences, e.g., when we want to infer the total of access rights
granted for a natural person who might have several user accounts in and across
information systems.

We are able to explain this problem by means of our ontology quality criteria
introduced in Definition 3.8 on page 41 : the ontology is not complete enough (its
vocabulary is not rich enough to capture the difference) and it is not accurate
enough (its universe is exclusively limited either to physical users or to the
corresponding information objects).

Suggested Improvement. We believe that this distinction is important for
disambiguating the nature of services and components. This especially holds
for semantic descriptions of Web services in the context of the Semantic
The separation would naturally follow from the use of a foundational ontology,

8~ fictitious Web shop, called Congo.com, cf, http: //www . dam1 . org/services/owl-s/i . I/
examples. html.
9 ~ n fact, the lack of this distinction stands behind the emergence of the "Semantic Web identity crisis" that
results from the ambiguous use of identifiers in Semantic Web ontology languages such as RDF [Pepper
and Schwab, 20031. In practice, a URI can be used to reference a document on the Web, either to reference
(a fragment of) a document containing some definition of a concept or to represent a concept (without any
intended reference to an actual location on the Web). Unfortunately, no standard scheme exists to distinguish
among the three kinds of identifiers even though they need to be resolved in different ways.

Analysis of Existing Ontologies 93

where the distinction is an important part of the characterization of concepts.
In particular, it makes it possible to be more specific about the kinds of rela-
tionships that can occur among objects or between objects and events. Using
a foundational ontology, it is possible and even required for the creator of a
description to make such distinctions because they fundamentally affect the
ontological nature of the objects and events concerned.

4. Summary
In this chapter we have analyzed whether existing ontologies are suitable

for our purposes, thus answering the Question 11.1: Can an existing ontology
be reused for our purposes? We have inspected one of the earliest and most
prominent Web service ontologies, viz., OWL-S, as well as our own initial
ontology of software components. We conclude that both are a big step forward
with design principles suitable also for our purposes. Their reuse is possible in
principle. However, both ontologies exhibit shortcomings that stand in conflict
with our goals of having a high-quality, reference and heavyweight ontology.
Their problems are very common also in more recent efforts (some of them are
discussed in the related work chapter). We further conclude that most of the
problems could have been avoided if a foundational ontology had been used as
a modelling basis. Thus, the remainder of this part designs a new management
ontology on the basis of a foundational ontology.

Chapter 6

THE APPROPRIATE
FOUNDATIONAL ONTOLOGY

In the previous chapter we have analyzed whether existing ontologies can
be reused and adapted for our purposes. We have had a closer look at OWL-S
and our own initial ontology of software components. Although their reuse
is possible, we would inherit severe problems that stand in conflict with our
goals of high quality, reference purpose and heavyweight axiomatization. Their
shortcomings have called for the use of a foundational ontology.

Redesigning OWL-S and our initial ontology of software components with
a foundational ontology as a basis is a dilemma between improving their prob-
lematic aspects and keeping as much of the original structure as possible. As
discussed in [Mika, Oberle et al., 2004a1, the result is an ontology of higher
quality, but with many "leftover" concepts of the original ontologies that com-
plicate its usage. Therefore, this chapter marks the starting point for building
a management ontology anew as it opts for an appropriate foundational ontol-
ogy. In lack of an established standard, we follow the strategy to first identify
requirements in terms of suitable ontological choices the foundational ontol-
ogy should reflect (cf. Section I). Suitable ontological choices are implicitly
given by the domain we want to model. Furthermore, the analysis of problem-
atic aspects of OWL-S and our own initial ontology of software components
yields additional requirements. Section 2 briefly discusses the alternatives, i.e.,
the most prominent foundational ontologies, with respect to the requirements.
After comparing the foundational ontologies, we conclude that the DOLCE
foundational ontology is the primary choice for our purposes (Section 3).

Most of the chapter resembles [Oberle et al., 2004b1, an internal project
report, where we advanced similarly in choosing an appropriate foundational
ontology. Bits and pieces of the ontologies' introductions are taken from [Varzi
and Vieu, 20041 and [Borgo et al., 2002, Masolo et al., 2002, Masolo et al.,
20031.

96 SEMANTIC MANAGEMENT OF MIDDLEWARE

1. Requirements for Ontological Choices
Finding the appropriate foundational ontology is dependent on the universe

of discourse we want to model, as well as the use cases and target users. In
our case, several aspects of software components and Web services are to be
modelled. This yields the requirements for ontological choices listed below.
Some of them are mandatory, whereas others are optional.

Descriptive We should aim at a descriptive ontology that captures the onto-
logical categories underlying natural language and human common sense.
Reading, creating and understanding semantic descriptions must be as in-
tuitive as possible for the developer. Being descriptive is a mandatory re-
quirement because revisionary ontologies, which model the intrinsic nature
of the world, would complicate those tasks.

Multiplicative The appropriate foundational ontology should provide a clear
and detailed treatment of objects and properties assuming that different enti-
ties can be co-located in the same space-time. The multiplicative approach
is optional because we assume it to be more intuitive. The human user
usually tends towards a multiplicative recognition.

Possibilism The examples of software components and their dependencies on
page 36 (Chapter 3, Section 1) already provide evidence that modalities
come in handy as a modelling primitive. Using a modal logic means com-
mitting to possibilism and provides us with a powerful means with respect
to expressiveness. Basically, possibilism is desirable, but not mandatorily
required.

Perdurantism The ability to model 4D entities, i.e., perdurants, is of central
importance for our ontology, and, thus, a mandatory requirement. For ex-
ample, when we want to model workflow information by computational
activities (which would be perdurants in this case).

The use cases of Chapter 4, Section 2, as well as the analysis of problematic
aspects of OWL-S and our own initial ontology of software components (cf.
Chapter 5, Section 3) yield additional requirements that particularly affect the
extrinsic properties:

Executable Language Our goal is to arrive at a core ontology with heavy-
weight axiomatization and reference purpose. Its intended models should
be approximated as concisely as possible to achieve high quality. However,
we should already take into account that we want to reason at run time
eventually. Hence, the foundational ontology is mandatorily required to be
available in a lightweight version, formalized in an executable language.

The Appropriate Foundational Ontology 97

Modular As we learn throughout the chapter, some foundational ontologies
feature a great number of concepts and associations, as well as an extensive
axiomatization. If monolithic, choosing such an ontology as a modelling
basis leads to over-commitment, i.e., the import of theories that will not be
used later on. Hence, it is desirable, but not mandatorily required, that the
appropriate foundational ontology consists of a minimal core and additional
modules reflecting theories such as the three listed below:

Theory of Contextualization The analysis of existing ontologies in Chapter
5, Section 3.3 reveals the need for a concise theory of contextualization. It
would allow us to move from an entangled, monolithic design to the rep-
resentation of different, possibly conflicting views with various granularity.
The existence of a theory of contextualization is optional because it could
be formalized anew in principle.

Theory of Plans One of the modelling requirements derived from the use cases
in Chapter 4, Section 2 is to formalize workJow information of components
and services. Foundational ontologies typically provide such modelling
capabilities by theories of plans. We have learned in Chapter 5, Section 3
that a rich axiomatization thereof would allow for meaningful inferences. It
is desirable to reuse an existing theory, but not mandatorily required.

Theory of Information Objects Another conclusion of the analysis in Chap-
ter 5, Section 3.4 has been that a concise distinction between entities in
an information system and the real world is required. Hence, an elabo-
rated theory of information objects is another requirement. As with all the
other theories, this one could also be formalized from scratch, making the
requirement an optional one.

2. Alternatives
This section provides a brief description of the basic assumptions and

methodologies considered in the most prominent foundational ontologies,
namely BFO, DOLCE, OCHRE, OpenCyc and SUMO. In particular, we ana-
lyze whether they meet the requirements put forward in the previous section.

There are further ontologies that label themselves "upper-level" which we do
not consider here for several reasons. In common literature we find particularly
John Sowa's upper-level ontology [Sowa, 20001, as well as Russell and Norvig's
upper-level ontology [Russell and Norvig, 19951. However, both are integrated
in SUMO - one of the alternatives we consider below.

Besides, there are several linguistic ontologies that are considered as upper-
level sometimes. In that category we find the PROTON Upper module,' which

'http: //proton. semanticweb. org/

9 8 SEMANTIC MANAGEMENT OF MIDDLEWARE

stems from a company called Ontotext, featuring several core and domain level
concepts. Others are o ens us,^ a 70,000-node terminology taxonomy and exten-
sion of WordNet, as well as Mikrokosmos3 and the Generalized Upper ~ o d e l . ~
All of them are "linguistically motivated ontologies" expressing classes corre-
sponding to existing natural language, and, thus, unsuitable for our purposes.

2.1 BFO
The BFO (Basic Formal Ontology) belongs to the Wonderweb library of

foundational ontologies [Masolo et al., 20031. The goals of the library are
to have: (i) starting points for building core and domain ontologies, (ii) a
reference point for comparisons among different ontological approaches and
(iii) a common framework for analyzing existing ontologies.

BFO is mainly known for its application in the bio-medical domain. An
essential feature is its separation into two ontology modules: SNAP and SPAN.
Each module represents a specific view on reality, according to the level of
granularity chosen by the modeler to catch certain aspects of the world.

SNAP provides a set of all the entities existing in time to model "snapshots
of reality." Such enduring entities are called Continuants in the case of BFO.
They are categorized into Substantial Entities, Spatial Regions and Tropes.
Substantial Entities are the bearers of properties and change, e.g., material
objects, organs or portions of the atmosphere, and are further classified in
Substances, Boundaries, etc. Tropes can be considered as the qualities
that inhere in Substantial Entities. Examples are the color of a tomato or
the temperature of a body. Tropes are subdivided into Qualities, Functions,
Conditions, etc. Finally, there are Spatial Regions which can be geographical,
cosmological, anatomical or topographical, for instance.

The SPAN module is a "catalogue" of perduring entities, called Occurants
here, divided into Temporal Regions, Processes and Spatio-temporal Re-
gions. Temporal Regions are pure temporal regions as opposed to Spatio-
temporal Regions which include dimensions to identify the spatial location of
an entity. Processes are happenings, occurring entities, or changes of various
kinds in substantial entities, e.g., the raising of temperature, the acquisition of
a social status, movements, activities, etc. Processes are further classified in
Settings, Events, Aggregates, etc. Finally, Spatio-temporal Regions are
the four dimensional regions of space-time. SNAP and SPAN are sketched in
Figure 6.1 .5

2http: //www . isi . edu/natural-language/resources/sensus . html
3http: //www . csee . umbc . edu/"dinglil/student/cmsc691k/mikrokosmos. htm
4http: //WWW. fbiO. uni-bremen. de/anglistik/langpro/webspace/jb/gum
'we visualize pure taxonomies as trees, because they are better suited than UML class diagrams for this
purpose.

The Appropriate Foundational Ontology 99

SNAP SPAN

/ I Substances Boundaries Quality Function ~on'dition ... Setting Events Aggregates

Figure 6.1. BFO Taxonomy.

BFO comes with a rich axiomatization in first-order logic without modali-
ties, i.e., the ontology commits to actualism. Both 3D entities (Continuants)
and 4D entities (Occurants) are considered, reflecting endurantism and perdu-
rantism at the same time. Furthermore, BFO affirms that there are many views
of reality which are equally veridical. These are views of entities in different
domains, views of entities as seen from different perspectives or views of what
exists on different levels of granularity (microscopic, mesoscopic, geographic).
Thus, BFO commits to a reductionist stance with respect to co-localized en-
tities. BFO assumes that reality and its constituents exist independently of
our (linguistic, conceptual, theoretical, cultural) representations thereof. This
position coincides with a revisionary ontological choice.

There is no publicly available version of BFO in an executable representation
language. Although BFO is minimal and split into two modules, there are no
additional theories for contextualization, plans or information objects.

2.2 DOLCE
DOLCE belongs to the Wonderweb library of foundational ontologies as well

[Masolo et al., 20021. It is intended to act as a starting point for comparing and
elucidating the relationships with other ontologies of the library and also for
clarifying the hidden assumptions underlying existing ontologies or linguistic
resources such as WordNet [Miller et al., 19901. It has been successfully
applied in different domains, such as law [Gangemi et al., 2004~1, biomedicine
[Gangemi et al., 2004al and agriculture [Gangemi et al., 20021.

DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) is
based on the fundamental distinction between enduring and perduring entities.
The main relation between Endurants (i.e., objects or substances) and Perdu-
rants (i.e., events or processes) is that of participation: an Endurant "lives"
in time by participating in a Perdurant. For example, a software compo-
nent, which is an Endurant, participates in its lifecycle, which is a Perdurant.

100 SEMANTIC MANAGEMENT OF MIDDLEWARE

DOLCE introduces Qualities as another category that can be seen as the basic
entities we can perceive or measure: shapes, colors, sizes, sounds, smells, as
well as weights, lengths or electrical charges. Spatial locations (i.e., a special
kind of physical quality) and temporal qualities encode the spatio-temporal at-
tributes of objects or events. Finally, Abstracts do not have spatial or temporal
qualities and they are not qualities themselves. An example are Regions used
to encode the measurement of qualities as conventionalized in some metric or
conceptual space. The basic concept hierarchy is sketched in Figure 6.2.

... ti ... s&
Interval Region

Figure 6.2. DOLCE Taxonomy.

As reflected by its name, DOLCE has a clear descriptive bi as, in the s ense
that it aims at capturing the ontological categories underlying natural language
and human common sense. DOLCE embraces the multiplicative approach:
starting from the observation that one tends to associate objects to incompatible
essential properties, DOLCE provides a clear and detailed treatment of objects
and properties assuming that different entities can be co-located in the same
space-time. DOLCE allows modelling 3D objects, i.e., Endurants, as well
as 4D objects, i.e., Perdurants. Thus, it commits to both endurantism and
perdurantism.

DOLCE features a rich reference axiomatization in modal logic S5, thereby
committing to possibilism. The axiomatization captures ontology design pat-
terns such as location in space and time, dependence or parthood. Its core is
minimal in that it only includes the most general concepts and patterns. This
makes it well-suited for modularization. In fact, there is a wealth of additional
theories that can be included on demand. Examples are Descriptions & Situa-
tions for contextualization, the Ontology of Plans, the Ontology of Time or the
Ontology of Information Objects [Gangemi et al., 2004bl.

The Appropriate Foundational Ontology 101

DOLCE is unique in that it provides a lightweight version (called DOLCE
Lite). Thus, the application of DOLCE-based ontologies becomes possible in
description logics such as DAML+OIL [Horrocks and Patel-Schneider, 20011
or OWL DL [McGuinness and van Harmelen, 20041. The reference axioma-
tization has been adopted manually to fit the target language. Changes affect
the DOLCE signature (associations may have the same name but different ari-
ties and domains), modal operators (which had to be omitted) and temporally-
indexed associations (which are partly rearranged as compositions with tempo-
ral location associations).

2.3 OCHRE
OCHRE (Object-Centered High-level REference ontology) is the latest mem-

ber of the Wonderweb library of foundational ontologies. In contrast to DOLCE
and BFO, it puts strong emphasis on a clear and elegant mereological framework
that gives a straightforward account of parthood relations between individuals.
OCHRE does not offer the rich taxonomies of DOLCE. It has not been applied
in real applications so far. [Schneider, 20031

OCHRE is an ontology of perdurants (events and processes) and objects
based on Tropes which are the mereological atoms out of which all denizens
of reality are supposed to be built up. OCHRE gives a qualitative account of
both objects and events as bundles of individual characteristics. Following the
footsteps of Aristotle's metaphysics, OCHRE distinguishes between Thick and
Thin Objects. Thick Objects are aggregations of Tropes that are extended in
time and space. They are mereotopologically rigid, i.e., invariant in terms of
composition and location. Change is reconstructed as the succession of such
Thick Objects that share a same Thin Object. A Thin Object can be thought
of as a core of essential properties that link a series of Thick Objects together.

For example, the Tropes of a ripening tomato are its color, its mass, its shape,
etc. The change of a ripening tomato just pertains to different Thick Objects
representing the tomato and its Tropes. That means, the Thick Objects are
wholes centered around the bundle of core characteristics, e.g., the tomato's
DNA, represented by a Thin Object. That one speaks of the same object
through change is grounded in the existence of Thin Objects.

As depicted in Figure 6.3, OCHRE splits its entities in Tropes and Sums
of Tropes. Tropes are the single characteristics of individuals which are tem-
porally aggregated by Sums of Tropes. The latter are further specialized into
Non Categorials and Categorials. As the name suggests, Non Categori-
als cannot be further categorized because they comprise arbitrary Sums of
Tropes. In contrast, Categorials can be further categorized in Abstract and
Concrete Categorials distinguished by spatio-temporal extension. Abstract
Categorials comprise the Thin Objects, as well as Guises (sums of single

SEMANTIC MANAGEMENT OF MIDDLEWARE

Sums of Tropes Tropes

A
Non Categorials Categorials

A\
x a l s Concrete Categorials

Thin Objects Guises
A

Thick Objects Perdurants

Figure 6.3. OCHRE Taxonomy.

Thin Objects and the Tropes dependent on them). Concrete Categorials
comprise the Thick Objects, as well as Perdurants.

OCHRE commits to ontological choices as follows: First, OCHRE adopts a
revisionary approach because the distinction between Thick Objects and Thin
Objects does not adhere to human common sense. Second, it is unclear if
OCHRE adopts a reductionist stance. Though multiplying spatio-temporally
co-located objects in OCHRE is avoided, it allows to distinguish between dif-
ferent Guises of the same Thick Object. Therefore, the same Thick Object
may contain more than one Guise, and, thus, more than one Thin Object. E.g.,
a vase contains at least three Guises: its "material" (i.e., a bundle of material
characteristics such as density or mass), its "form" (i.e., a bundle of formal
characteristics such as shape) and its "function" (i.e., characteristics pertaining
to its use). Despite its insistence on topological extensionality, OCHRE allows
the multiplication of "abstract," i.e., non-spatial, parts of the same spatial entity.
This is possible since OCHRE adopts a qualitative account of objects. Third,
OCHRE commits to endurantism, because it considers events and processes
being constituted by successions of Thick Objects. Indeed, an event as a basic
perdurant corresponds to some elementary change, and, thus to the succession
of two Thick Objects sharing a same Thin Object. Finally, the latest version
of OCHRE commits to possibilism because it contains an account of possibilia
(possible objects and possible worlds) in terms of Sums of tropes.

A version of OCHRE in an executable representation language is in the
making at the time of writing this document. Compared to DOLCE, it lacks
rich taxonomies which would allow a simple integration of domain-specific
ontologies. However, it is not monolithic, since it has been designed to be
extendable. Theories for contextualization, plans or information objects are

The Appropriate Foundational Ontology 103

missing but could possibly be implemented by introducing new subconcepts of
Tropes, Thin and Thick objects and Perdurants.

2.4 OpenCyc
The Cyc project started in the mid eighties and was carried out by MCC

(Microelectronics and Computer Consortium) which was later taken over by
Cycorp. The project resulted in a complex knowledge-based system with a
large corpus of commonsense knowledge. The knowledge is captured by an
equally complex ontology, called UpperCyc, whose publicly available version,
OpenCyc, is the focus of this ~ e c t i o n . ~

OpenCyc captures millions of everyday terms, concepts and rules which try
to formalize the human knowledge of reality. Due to problems of consistency
within a huge knowledge base, the information in OpenCyc has been carved up
according to hundreds of microtheories. A microtheory, in Cyc terms, usually
concerns a specific domain of knowledge and bundles assertions that share com-
mon assumptions about the world thus representing a specific context. [Guha
and Lenat, 19901

The highest entity in the OpenCyc ontology is Thing which is further par-
titioned into MathematicalOrCornputationalThing, Partiallylntangible and
Individual. All instances of MathematicalOrComputationalThing are ab-
stract entities that do not have temporal or spatial properties. The collection of
things that either are wholly intangible or have at least one intangible, i.e., im-
material, part are subsumed by Partiallylntangible. Individual defines the set
of individuals that are not a set or collection. The concept hierarchy is sketched
in Figure 6.4.

OpenCyc appears to be deeply affected by cognitive assumptions, since its
categories try to capture naive conceptions of the real world, that is, the human
fund of commonsense knowledge. For this reason we can consider OpenCyc a
descriptive ontology. Unfortunately, it must be said that the characterization of
the commitments on underlying ontological choices seems to be a secondary
task in the current state of the Cyc project. The documentation is still sketchy,
and as a consequence, there is a lack of references to the established literature.
That means there is no clear position which shows whether the ontology com-
mits to possibilism or actualism, endurantism or perdurantism and whether it
can be considered multiplicative or reductionist. [Borgo et al., 20021

OpenCyc is primarily represented in CycL, which closely resembles KIF
(Knowledge Interchange Format) [Genesereth and Fikes, 19921, basically
equalling the expressiveness of first-order logic. It comes with a proprietary
inference engine and application programmer's interface. The usage of mi-

"ttp: / /www. opencyc. org/

SEMANTIC MANAGEMENT OF MIDDLEWARE

Mathematicalor Partially

A
Event StaticSltuation

Figure 6.4. OpenCyc Taxonomy.

crotheories partitions the ontology into modules. However, there is neither a
microtheory for contextualization, nor for plans, or for information objects.

2.5 SUMO
The Suggested Upper Merged Ontology (SUMO)~ is the most prominent

proposal under consideration by the IEEE Standard Upper Ontology (SUO)
working group8 [Niles and Pease, 20011. It is an attempt to link categories
and relations coming from different top-level ontologies in order to improve
interoperability, communication and search in the Semantic Web area. The
development of SUMO was based on the merging of different ontology mod-
ules and theories: John Sowa's upper level ontology [Sowa, 20001, Russell and
Norvig's upper level ontology [Russell and Norvig, 19951, James Allen's tem-
poral axioms [Allen, 19841, Casati and Varzi's formal theory of holes [Casati
and Varzi, 19951, Barry Smith's ontology of boundaries [Smith, 19961, Nicola
Guarino's formal mereotopology [Borgo et al., 19961 and various formal repre-
sentation of plans and processes, including the Core Plan Representation (CPR)
[Pease, 19981 and the Process Specification Language (PSL) [Griininger and
Menzel, 20031.

A sketch of the taxonomy is depicted in Figure 6.5. The topmost concept in
SUMO is Entity, which is further split into Physical and Abstract. Physical

7http: //ontology. teknowledge. corn/
Xhttp: //suo. ieee. org

The Appropriate Foundational Ontology 105

entities are further divided into Objects and Processes. Other general top-
ics, which are not shown in Figure 6.5, include: structural concepts (instance,
subclass), general types of objects and processes, abstractions (including set
theory, attributes, and relations, number, measures, temporal concepts, such as
duration and parts and wholes). [Pease et al., 20021

Figure 6.5. SUMO Taxonomy.

Because of its characteristic merging of different ontology modules and the-
ories, SUMO is actually not influenced by any specific theoretical approach.
Rather, it tends to adopt the general categories from various ontology proposals.
In this context, we should say that SUMO does not clearly adopt either a multi-
plicative or a reductionist approach. We encounter the same dilemma regarding
the choices possibilism vs. actualism, as well as endurantism vs. perdurantism.
We classify SUMO as being descriptive because it adopts the commonsense
distinction between objects and processes.

As we have learned above, SUMO is more or less modularized with respect
to the different theories of which it consists. There is a theory of plans (the Core
Plan Representation and the Process Specification Language), but no modules
or theories for contextualization and information objects. SUMO provides quite
a rich axiomatization formalized in the Standard Upper Ontology Knowledge
Interchange Format (SUO-KIF), a variation and simplification of the Knowl-
edge Interchange Format (KIF) [Genesereth and Fikes, 19921. There also is an
OWL Full version. Both require expressiveness equal to first-order logic.

3. Summary
In this chapter we have analyzed the most prominent foundational ontolo-

gies in light of the requirements put forward in Section 1. Tables 6.1 and 6.2
summarize the analysis and allow a clear comparison. The decision for the
DOLCE foundational ontology as modelling basis is straightforward, since it

SEMANTIC MANAGEMENT OF MIDDLEWARE

meets all our requirements. Choosing DOLCE means opting for a conceptually
clean approach with explicit commitment to ontological choices.

Table 6.1. The different alternatives compared to the requirements for ontological choices
(mandatory requirements are written in italics; all the others are optional). Cells labelled with
"unclear" express that there is no clear position to the corresponding ontological choice. This is
a rather undesirable property of an ontology and is considered negatively.

Requirement \ Alternative
Descriptive
Multi~licative
Possibilism

Another unique feature of DOLCE is the existence of a lightweight ver-
sion. Its reference axiomatization has already been adapted to an executable
description logic. This saves us a lot of work when we want to realize semantic
management using our management ontology with DOLCE as a basis. In ad-
dition, DOLCE is unique in that it is well-modularized, providing all required
theories for context modelling, plans and information objects. Thus, choosing
DOLCE minimizes the risk of ontological over-commitment.

BFO

Perdurantism

Table 6.2. The different alternatives compared to the requirements for extrinsic properties
(mandatory requirements are written in italics; all the others are optional).

x

DOLCE
x
x

x I unclear 1 unclear
x

Requirement \ Alternative
Executable Language
Modularization
Theory of contextualization

OCHRE

unclear

x

Theory of plans 1 - 1 x

I unclear 1 unclear

BFO

x

x

OpenCyc
x

unclear

Theory of information objects I - I x

SUMO
x

unclear

DOLCE
x
x
x

OCHRE
x
x

OpenCyc
x
x

SUMO
x
x

Chapter 7

AN ONTOLOGICAL FORMALIZATION OF
SOFTWARE COMPONENTS AND WEB SERVICES

In the previous chapter we have analyzed the most prominent foundational
ontologies in light of our requirements for ontological choices. We have decided
to use the DOLCE foundational ontology as a starting point for modelling our
management ontology.

This chapter is concerned with the design of an appropriate management on-
tology based on DOLCE. Appropriateness comprises: (i) to meet the modelling
requirements derived from our use cases, (ii) to achieve high quality according
to the ontology quality criteria and (iii) to enable reuse in specific platforms
and to reduce modelling efforts to a minimum.

Regarding (i), the use cases of Section 2 in Chapter 4 on page 65 allowed de-
riving a set of modelling requirements to be met by the management ontology. In
order to enable semantic management we have to model: (a) libraries, licenses,
component profiles, component taxonomies, API descriptions, semantic API
descriptions, access rights and workjlow information of software components
and (b) service profiles, service taxonomies, policies, workjlow information,
API descriptions, as well as semantic API descriptions of Web services.

Point (ii) coincides with the Question 11.2: How to ensure high quality?
Therefore, Definition 3.8 on page 41 introduced specific quality criteria. The
general idea is to axiomatize the intended models of our universe of discourse as
closely as possible. A high-quality ontology avoids the typical shortcomings of
common ontologies as outlined in Chapter 5, viz., conceptual ambiguity, poor
axiomatization, loose design and narrow scope. That means, e.g., to exclude
unintended interpretations of overloaded terms, such as "software component"
or "Web service." The management ontology should allow developers and
administrators to disambiguate such overloaded terms. Hence, our management
ontology has to have a reference characteristic. This is achieved by an extensive
axiomatization, resulting in a heavyweight ontology.

108 SEMANTIC MANAGEMENT OF MIDDLEWARE

Finally, (iii) requires the modelling to capture the idiosyncracies of software
components and Web services and to be platform-independent at the same time.
The answer to the corresponding research Question 11.3 (How to decrease mod-
elling eflorts and enable reuse?) is to have a core ontology that can easily
be reused and specialized in a concrete platform. In fact, Part I11 reuses and
specializes the management ontology to realize semantic management in a con-
crete system. Modelling efforts can be decreased by leveraging the foundational
ontology and its modules.

Figure 7.1 provides an overview of the reused ontology modules and the
modules we contribute in this chapter. Besides DOLCE, we also need theories
for contextualization, for plans and for information objects (as discussed in
Chapter 6, Section 1, page 96). Descriptions & Situations, the Ontology of
Plans, and the Ontology of Information Objects realize such theories and come
in the form of ontology modules. All the modules are briefly explained in
Section I in order to have a self-contained document. Our contributed ontology
modules, viz., the Core Software Ontology, the Core Ontologies of Software
Components and Web Services are introduced in Sections 2,3 and 4. The reader
may confer to the Appendix where we provide the taxonomies of all ontology
modules. Finally, Section 5 shows how the management ontology responds to
(i), (ii) and (iii) by examples.

T
Specificity

DOLCE r l
,--------------- & Situations

Ontology

I I

Software Components of Web Sewices

reused
ontology
modules

contribution

Figure 7.1. Overview of the management ontology as UML package diagram. Packages rep-
resent ontology modules; dotted lines represent dependencies between modules. An ontology
module MI depends on M2 if it specializes concepts of M2, has associations with domains and
ranges to M2 or reuses its axioms.

An Ontological Formalization of Sofiware Components and Web Services 109

Some of the ontology modules discussed in this chapter are reused as depicted
in Figure 7.1. DOLCE is introduced in [Masolo et al., 20031, the Descriptions
& Situations module, as well as the Ontology of Plans and the Ontology of
Information Objects are discussed in [Gangemi et al., 2004bl. Parts of the Core
Ontology of Web Services originate from [Mika, Oberle, et al., 2004a, Mika
et al., 2004b, Gangemi et al., 2003b, Oberle et a]., 2005b, Lamparter et al.,
20051.

1 Modelling Basis
When designing an ontology, it is desirable to start with an extensive and

sound modelling basis. Hence, our methodology is geared towards reuse of
generic ontology modules in order to reduce modelling efforts. Figure 7.1
already provided an overview of the reused ontology modules and the modules
we contribute. We begin in this section by briefly discussing the reused ontology
modules DOLCE, Descriptions & Situations, the Ontology of Plans, and the
Ontology of Information Objects.

1.1 DOLCE
Foundational ontologies are generic, heavyweight and designed for reference

purposes (cf. the classification of ontologies in Chapter 3, Section 2, on page
44). Using a foundational ontology as a modelling basis means relating core
concepts and associations to some proposed invariant categories of human cog-
nition (which are reflected in the foundational ontology itself). This prompts
the ontology engineer to sharpen his notions with respect to the distinctions
made in the foundational ontology. What is typically gained is an increased
understanding of one's own ontology.

Chapter 6 has discussed our decision for the DOLCE foundational ontology.
First, DOLCE provides the required theories for modelling contexts, plans and
information objects. All of them are required for our ontologies and are ex-
plained below. Second, DOLCEcommits to ontological choices (perdurantism,
possibilism, being multiplicative, being descriptive) which are suitable for our
domain. Third, DOLCE comes both in a reference and in an application ver-
sion, axiomatized in quantified modal logic and implemented description logics
(OWL DL), respectively. That allows us to formalize our own ontology with a
maximum of expressiveness and to use it for run time reasoning later on.

We have already introduced DOLCE in Chapter 6, Section 2. However, we
repeat it here in more detail and for the sake of readability. DOLCE (Descrip-
tive Ontology for Linguistic and Cognitive Engineering) classifies entities into
four categories. These are, as shown in Figure 7.2, Endurants, Perdurants,
Qualities and Abstracts [Masolo et al., 20021. The main relation between
Endurants (i.e., objects or substances) and Perdurants (i.e., events or pro-

110 SEMANTIC MANAGEMENT OF MIDDLEWARE

Particula

f
I I I

Abstrac 9
I -

i o ~ i tedln
I I

inherenth lxatedln local*ln Physical' Temporal Abstract
Region Region Region

4

Figure 7.2. Sketch of DOLCE as UML class diagram. [Gangemi et al., 2004bl

cesses) is that of participation: an Endurant "lives" in time by participating
in a Perdurant. DOLCE introduces Qualities as another category that in-
cludes the properties of objects or events which we can perceive, measure or
conventionally assert (e.g., color, density, legal validity). Finally, Abstracts
do not have spatial or temporal qualities, nor are they qualities themselves. In
particular, Regions are used to encode the representation of Qualities as con-
ventionalized in some metric or conceptual space (e.g., a color space, a musical
pitch space, a set of legal values). Every category features a whole taxonomy
of specializations.

1.2 Descriptions & Situations (DnS)
The domain we want to model, namely that of software components and Web

services, requires an ontological formalization of context. The most prominent
examples for the need of context modelling are the different views that might
exist on data. Data can play the role of both input and output, depending on the
context considered. In Chapter 6, Section 1, page 96, we have already discussed
that a theory for contextualization is required for that reason.

DOLCE provides an ontological theory of contexts that comes in the form of
an ontology module. The module's name is Descriptions & Situations (DnS).
DnS can be considered an ontology design pattern for structuring core and do-
main ontologies that require contextualization. The following paragraph pro-
vides a brief introduction. For a more detailed description please cf. [Gangemi
et al., 2OO4b, Gangemi and Mika, 20031.

An Ontological Formalization of Software Components and Web Services 11 1

When Descriptions & Situations is used with DOLCE, the DOLCE entities
are called ground entities and the newly introduced entities of Descriptions &
Situations are called descriptive entities. We also visualize this distinction in
Figure 7.3. Parameters, Roles and Courses are the descriptive entities which
are special kinds of ConceptDescriptions (a D0LCE:NonAgentiveSocial-
Object).' The descriptive entities "describe" the ground entities in the follow-
ing way:2 Parameters are valuedBy DOLCE:Regions, Roles are playedBy
D0LCE:Endurants and Courses sequence D0LCE:Perdurants. The de-
scriptive entities are aggregated by a SituationDescription via the defines
association. The SituationDescription ontologically represents the context.

I I

Role Course
requisiteFor modalTarget t

I I settino I I

Figure 7.3. The Descriptions & Situations (DnS) ontology module as UML class diagram.
Grey classes represent the ground entities of DOLCE. Descriptive Entities are Parameters,
Roles and Courses. [Gangemi et a]., 2004bl

Furthermore, the module can be used to reify the satisfiability relation, viz.,
k, of the underlying logic. As a result, we have a satisfies association between
two sets of assertions. The first set is the Situation which groups ground entities
via the setting association. The second set of assertions is the Situation-
Description. A Situation satisfies a SituationDescription if its components
describe the ground entities according to specified rules. The Descriptions &
Situations module only defines the most generic satisfies association implying

' ~ h r o u ~ h o u t Chapter 7, concepts and associations are labelled in a namespace-like manner. Narnespace-
prefixes indicate the module where concepts and associations are defined. If no namespace is given, concepts
and associations are assumed to be defined in the ontology module currently discussed.
 he reader may note, that we occasionally use concept and association names (written in sans serif and
preceded by a namespace to clarify their origin) as subjects, objects and predicates of the sentences.

112 SEMANTIC MANAGEMENT OF MIDDLEWARE

that at least some components of a SituationDescription must describe entities
in the Situation. This constraint is minimal and for specialized Situation-
Descriptions additional constraints should be given in order to reason with
the satisfaction of candidate Situations. One example is the module discussed
next: the Ontology of Plans.

1.3 Ontology of Plans (OoP)
One of the explicit requirements derived from the Transactional Settings,

Secure Communication, Analyzing Message Contexts and Detecting Loops in
Interorganizational Workjows use cases is the possibility to model workflow
information between software components or between Web services. One of
the DOLCE modules, the Ontology of Plans (OoP), formalizes a theory of plans
in a generic way. It can be reused to model workflow information as well.

The Ontology of Plans applies the ontology design pattern of Descriptions &
Situations to characterize planning concepts. The intended use of the module
is to specify plans at an abstract level independent from existing calculi. It is
expected that the concepts of the module are implemented as a framework to
define detailed or approximate plans for any use (social, personal, computa-
tional) by appropriate tools. The resulting plans would then be grounded in
some system that implements a set of functionalities and reasons according to
the specifications given here. For a detailed description the reader is
to [Gangemi et al., 2004bl.

referred

t
9 DnS:defines f

DnS:AgentiveRol Plan
, 1 h I

proactively
Satides

Figure 7.4. The Ontology of Plans as UML class diagram. Grey classes represent ground cnti-
ties. Concepts from Descriptions & Situations are labelled namespace-like with DnS. [Gangcmi
et al., 2004bl

Plans are special kinds of DnS:SituationDescriptions, which DnS:define
Tasks (a special kind of DnS:Course). A typical hierarchy of Tasks (case,
branching, synchronization, concurrency, cycling, etc.) is characterized with

An Ontological Formalization of Software Components and Web Services 113

the help of succession relations. Furthermore, Tasks DnS:sequence Activi-
ties - a specialization of DOLC E: Perdu rant. Activities are complex actions
that are at least partly conventionally planned.

Specializations of the satisfies association of Descriptions & Situations
are applied to express preconditions, postconditions, and several types of
satisfaction between a Plan and specific DnS:Situations, e.g., proactively-
Satisfies.

As an example we might consider the CustomerEntityBean which modi-
fies the Customer table (cf. our motivating example in Chapter 2, Section 3.1,
page 24). In order to formalize this setting, we introduce the CustomerEntity-
BeanPlan which DnS:defines the ModifyTable task. An actual execution of
this task is represented via the 23:58:00 instance to reflect its timestamp, i.e.,
DnS:sequences(ModifyTable, 23:58:00). We keep this as a running example,
refine and extend it as we move along.

(Ex 1) 00 P : Plan(CustomerEntityBeanP1an)
(Ex2) DnS:defines(CustomerEntityBeanPlan, ModifyTable)
(Ex3) OoP:Task(ModifyTable)
(Ex4) DnS:sequences(ModifyTable, 23:58:00)
(E x 3 OoP:Activity(23:58:00)
(Ex6) OoP:PlanExecution(ModifyTableExecution)
(Ex7) DnS:setting(23:58:00, ModifyTableExecution)

1.4 Ontology of Information Objects (010)
In our motivating examples we have encountered fundamental ontological

questions, e.g., how to model the relationship between a user in an information
system and its corresponding natural person (cf. Section 3.1 in Chapter 2).
Hence, another requirement for our ontology identified in Chapter 6, Section 1,
is a concise distinction between entities in an information system and the real
world.

The DOLCE library provides another module that allows us to formalize
such relationships: the Ontology of Information Objects (010). Information
objects are the core notion of a semiotic ontology design pattern which we
briefly discuss here. For a more detailed discussion please cf. [Gangemi et al.,
2004bl.

A content (information) transferred in any modality is assumed to be equiva-
lent to a kind of social object called InformationObject. InformationObjects
are spatio-temporal entities of abstract information as described in Shannon's
communication theory, hence they are assumed to be in time and realized by
some entity.

Figure 7.5, which depicts the concepts and associations of the module, is
best explained by a concrete example. The encoding of the CustomerEnt ity-
Bean in Java could be considered an InformationObject. In this case, the

114 SEMANTIC MANAGEMENT OF MIDDLEWARE

Figure 7.5. The Ontology of Information Objects as UML class diagram. Concepts defined
in DOLCE and Descriptions & Situations (DnS) are labelled with corresponding namespaces.
[Gangemi et al., 2004bl

InformationObject would be orderedBy the Java language (the Information-
EncodingSystem) and realizedBy a specific appearance of the algorithm in
main memory (e.g., the contents between memory addresses 0x2112-0x5150).
The CustomerEnt ityBean expresses a specific 00P:Plan of computational
tasks (such as ModifyTable) and is interpretedBy a CPU.~

(Ex8) 010:1nformationObject(CustomerEntityBean)
(Ex9) OIO:orderedBy(CustomerEntityBean, Java)

(ExlO) OIO:lnformationEncodingSystem(Java)
(Ex1 1) OlO:realizedBy(CustomerEntityBean, 0x2112-0x5150)
(Ex12) OIO:lnformationRealization(0~2112-0x5150)
(Ex1 3) OIO:expresses(CustomerEntityBean, CustomerEntityBeanPlan)
(Ex14) OIO:interpretedBy(CustomerEntityBean,CPU)
(Ex15) DOLCE:MaterialArtifact(CPU)

2. Core Software Ontology (CSO)
In order to model the required aspects of components and services, it is

necessary to identify fundamental concepts, such as software or data, and to
formalize them by reusing our modelling basis. In this section, we contribute
the Core Software Ontology, which formalizes such fundamental concepts. The

3 ~ e assume without further mention that for any association there exists an inverse. The naming of associ-
ations and their inverses follows an intuitive scheme, e.g., the inverse of realizedBy is called realizes.

An Ontological Formalization of Sofhvare Components and Web Services 115

Core Software Ontology can be classified as reference, core and heavyweight,
and is later reused to formalize the required aspects of components and ser-
vices. Thus, the Core Software Ontology acts as a common basis for the Core
Ontologies of Software Components and Web Services which are built in the
subsequent sections.

Having a common basis is beneficial because it requires modelling the fun-
damental concepts only once. In essence, the Core Software Ontology meets
all modelling requirements which are common to software components and
Web services (as derived by our use cases starting on page 66). These are: API
descriptions, semantic API descriptions, workJlow information, access rights
and policies. The modelling requirements constrain our modelling horizon and
give us indications which concepts and associations we have to model. When
formalizing concepts and associations, we usually specialize the ontology de-
sign patterns provided by DOLCE and its modules. If such design patterns are
not applicable the modelling is left to our discretion. Note that we consider our
contributed ontologies as being formalized in DOLCE's representation formal-
ism, viz., modal logic S5. Although we do not explicitly use modal quantifiers,
their usage is rooted in DOLCE's concepts and associations, cf. [Masolo et al.,
20031, which we reuse for our modelling.

2.1 Software vs. Data
As mentioned above, the Core Software Ontology formalizes the most fun-

damental concepts required to model both components and services. We start
in this section with a detailed discussion of software and data. In order to clarify
both concepts, which are heavily inflicted by polysemy, it is necessary to iden-
tify and formalize the entities of the computational domain. The computational
domain has a reality of its own, consisting of data manipulated by programs
that implement algorithms. The programs that manipulate the data are usually
referred to as software. Upon close inspection, it seems that the term software
is overloaded and refers to at least three different concepts [Gangemi et al.,
2003bl:

1 The encoding of an algorithm specification in some kind of representation
(i.e., 0I0:lnformationEncodingSystem). Encoding can be either in mind,
on paper or any other form. The CustomerEntityBeancan be represented
as Java or pseudo code, for instance. This is SoftwareAsCode and is a
kind of 0IO:lnformationObject.

2 The realization of the code in a concrete hardware. These realizations are
the D0LCE:PhysicalEndurants that are stored on hard disc or residing in
memory. Henceforth, we will call them ComputationalObjects (a special
kind of 0IO:lnformationRealization). This could be the appearance of
the CustomerEntityBean in main memory that can be interpreted and

116 SEMANTIC MANAGEMENT OF MIDDLEWARE

executed by the CPU. Hence, the difference between 1 and 2 is that 2 is
physically present in some hardware.

3 The running system, which is the result of an execution of a Computational-
Object. This is the form of software which manifests itself in a sequence
of activities in the computational domain, e.g., the increment of a variable,
the comparison of data, the storage of data on the hard disc, etc. This form
of software is a D0LCE:Perdurant which we will call Computational-
Activity.

ComputationalObjects (item 2) are a specialization of 0IO:lnformation-
Realization (any entity that realizes an 0IO:lnformationObject) as introduced
in the Ontology of Information Objects. ComputationalActivities (item 3)
are a specialization of 0oP:Activity as introduced in the Ontology of Plans.
ComputationalObjects and ComputationalActivities are the entities that live
in the computational domain. The definitions below formalize the described
properties.4

(Dl) ComputationalObject(x) =def OIO:lnformationRealization(x) A
Vy(DOLCE:participantln(x, y) -t ComputationalActivity(y)) A
3d(DOLCE:specificallyConstantlyDependsOn(~, d) A
Hardware(d))

(D2) ComputationalActivity(x) =def OoP:Activity(x) A
Vy(DOLCE:participantln(y, x) -+ ComputationalObject(y)) A
3c(DOLCE:specificallyConstantlyDependsOn(~, C) A
ComputationalObject(~))

ComputationalObjects are characterized by the fact that they are neces-
sarily dependent on Hardware which is a D0LCE:MaterialArtifact. The ex-
ecution of a ComputationalObject may lead to ComputationalActivities.
Hence, CornputationalActivities depend on the existence of a corresponding
ComputationalObject. A suitable dependence association is axiomatized in
DOLCE and is called specificallyC~nstantlyDependsOn:~

(D3) DOLCE:specificallyConstantlyDependsOn(x, y) =def

0(3t(DOLCE:presentAt(x, t)) A Vt(DOLCE:presentAt(x, t) +

DOLCE:presentAt(y, t)))

4 ~ e consider unbound variables in definitions, axioms, and theorems as universally quantified.
5 ~ n entity that specificallyConstantlyDependsOn another entity is similar to weak entities in UML
class diagrams. An entity x specificallyConstantlyDependsOn another entity y iff, at any time t, x
cannot be present at t unless y is also present at t. DOLCE formalizes this association by using the
DOLCE:presentAt(x, t) association that stands for "x is present (exists) during the time interval or instant
t." Note that qlT(t1 , x) is the temporal location of x in t'. [Masolo et al., 20031

An Ontological Formalization of Software Components and Web Services 117

As an example, we might consider the ComputationalObject residing in
memory between addresses 0x21 12 and 0x5150 whose (partial) execution leads
to the ComputationalActivity carried out at and identified by the timestamp
23:58:00. The CornputationalObject could be a concrete appearance of
the CustomerEntityBean (cf. the motivating example on page 24) and the
ComputationalActivity could be the execution of one of its methods.

Regarding item 1, we characterize SoftwareAsCode (which we abbreviate
to Software) as an 0IO:InformationObject. Accordingly, we specialize the
design pattern represented by the Ontology of Information Objects (cf. Fig-
ure 7.5 on page 1 14). First, we constrain the 0IO:realizedBy association to
ComputationalObjects. Second, we say that Software 0IO:expresses an
0oP:Plan (cf. Figure 7.6 for an overview). The 0oP:Plan consists of an arbi-
trary number of ComputationalTasks that DnS:sequence Computational-
Activities (cf. Definition (D6) below). As explained in the Ontology of Plans
(Section 1.3), Tasks are the descriptive counterparts of 0oP:Activities which
are actually carried out. Definition (D5) below captures this intuition of soft-
ware.

(D5) Software(x) =def

OIO:lnformationObject(~) A \Jy(OIO:realizedBy(x, y) +

ComputationalObject(y)) A 3p, t(OoP:Plan(p) A
OIO:expresses(x, p) A ComputationalTask(t) A DnS:defines(p, t))

(D6) ComputationalTask(x) =def OoP:Task(x) A
\Jy(DnS:sequences(x, y) + ComputationalActivity(y))

The ComputationalObject introduced in (Ex16) can be regarded as a con-
crete realization of Software (in our case as the CustomerEntityBean). We
have learned in our motivating example that the bean modifies the Customer ta-
ble. Hence, its corresponding 0oP:Plan DnS:defines a ComputationalTask
that represents the m~dification.~ The ComputationalActivity introduced in
(Ex17) could be one specific execution of this task.

(Ex 19) Software(CustomerEntityBean)

6 ~ o t e that the detail of modelling ComputationalTasks is a matter of choice. In principle, ModifyTable
can be considered a complex task and can be broken down to CPU operations.

118 SEMANTIC MANAGEMENT OF MIDDLEWARE

(Ex20) OIO:realizes(Ox2112-0x5150, CustomerEntityBean)
(Ex2 1) OIO:expresses (CustomerEntityBean, CustomerEntityBeanPlan)
(Ex22) OOP :Plan (CustomerEntityBeanPlan)
(Ex23) DnS:defines(CustomerEntityBeanPlan, ModifyTable)
(Ex24) CornputationalTask(ModifyTab1e)
(Ex25) DnS:sequences(ModifyTable, 23:58:00)

Figure 7.6. The classification of software and data. Concepts and associations taken from
DOLCE, Descriptions & Situations (DnS), the Ontology of Plans (OoP), the Ontology of Infor-
mation Objects (010) are labelled with a namespace.

We consider the data which are manipulated by the programs as
CornputationalObjects as well. This reflects the fact that the appearances
in the main memory or on the hard disc can be interpreted as instructions for
the CPU (i.e., as software) or can be treated as data from the viewpoint of
another program. For example, the operating system manipulates application
software (loading and unloading it into memory, etc.) much like application
software manipulates application data.

Hence, Data can also be considered as a special kind of 0IO:lnformation-
Object. The difference to Software is that Data does not 0IO:express an
0oP:Plan. Furthermore, we introduce AbstractData as a special kind of
Data that identifies something different from itself. An example for Abstract-
Data might be a user account in a Unix operating system which has a physical
counterpart in the real world. Thus, we say that AbstractData identifies a
D0LCE:Particular (a natural person, a company, a physical object) [Gangemi
et al., 2004bl. The identifies association is a specialization of 0IO:about.
Definitions (D7), (D8), and (D9) capture these intuitions.

An Ontological Formalization of Sofmare Components and Web Sewices 119

(D7) Data(x) =def 010:lnformation0bject(~) A
Vy(OIO:realizedBy(x, y) + ComputationalObject(y))

(D8) AbstractData(x) =def

Data(x) A 3y(DOLCE:Particular(y) A identifies(x, y))
(D9) identifies(x, y) =def

OIO:about(x, 9) A AbstractData(~) A DOLCE:Particular(y) A x # y

As an example, we might introduce another two ComputationalObjects that
represent the dbuser and the Customer table in main memory. The dbuser
is AbstractData because it identifies a D0LCE:NaturalPerson outside the
computational domain, in this case the a ~ t h o r . ~

ComputationalObject(0~22-0x23)
ComputationalObject(0~316-0x812)
AbstractData(dbuser)
Data(CustomerTab1e)
OlO:realizedBy(dbuser, 0x22-0x23)
OlO:realizedBy(CustomerTable, 0x316-0x812)
identifies(dbuser, DanielOberle)
DOLCE:NaturalPerson(DanielOberle)

The theorem (TI) below is an entailment of our axiomatization. (Tl) states
that Software must also be considered as Data. As discussed before, this
is intuitively clear because an algorithm can be considered as Data from the
viewpoint of a compiler, for example. Comparing (D5) and (D7), we find
that Software additionally 0IO:expresses an 0oP:Plan with at least one
ComputationalTask. Thus, Software is more specific than Data.

(TI) Software(x) -+ Data(x)

2.2 API Description
The formalization of fundamental concepts like Software and Data is a

prerequisite for defining API descriptions which is explicitly required by the
Automatic Generation of Web Service Descriptions, Exception Handling and
Monitoring of Changes use cases. Assuming the object oriented paradigm (to
which we limit ourselves in the remainder of this book), we need to model
classes, methods, their inputs, outputs, and datatypes, as well as exceptions.
Note that we do not strive to formalize all constructs of object orientation. We
limit ourselves to the particular subset that is necessary to formalize simple

7 ~ o t e that the Customer table as a whole is Data, but its specific rows, i.e., customer entries, are Abstract-
Data.

120 SEMANTIC MANAGEMENT OF MIDDLEWARE

API descriptions (e.g., we do not formalize specific objects, polymorphism or
inheritance). Below, we give our understanding of those concepts.

(D10) Class(x) =def Software(x) A Vy(DOLCE:properPart(~, y) -+

(Data(y) v Method(9)))
(Dl 1) Method(x) =def Software(x) A b'y(DOLCE:properPart(y, X) -+

Class(y))
(D12) Exception(x) =def Class(x) A b'y(methodThrows(y, X) -+

Method(y))
(D13) DOLCE:properPart(x, y) =def

DOLCE:part(x, y) A lDOLCE:part(y, X)

(Al) methodRequires(x, y) -+ Method(x) A Data(y)
(A2) methodYields(x, y) -+ Method(x) A Data(y)
(A3) methodThrows(x, y) -+ methodYields(x, y) A Exception(y)
(A4) dataType(x, y) -+ Data(x) A (Region(y) v Data(y))

Definition (DIO) considers a Class as a special kind of Software that en-
capsulates an arbitrary number of Data and an arbitrary number of Methods.
Vice versa, a Method is defined as being a part of a Class, having input and
output parameters and throwing exceptions. The associations between Meth-
ods and their parameters and exceptions are established via methodRequires,
methodyields and methodThrows (cf. (Dl I), (Al), (A2), and (A3)). Excep-
tions are special kinds of Classes as defined in (D12). dataType relates Data
with specific kinds of D0LCE:Regions in the case of simple datatypes, such
as strings or integers, or with other Data in the case of complex datatypes, e.g.,
other classes (cf. Axiom (A4)).

As an example, both the CustomerEntityBean and the WebShopServlet
would be Classes. For the bean, we just specialize the instance introduced in
(Ex19) on page 117. The set of instances below also formalizes the servlet's
doGet 0 method:

(Ex34) Class(WebShopSew1et)
(Ex35) Cla~s(CustomerEntityBean)
(Ex36) DOLCE:properPart(WebShopSewlet, doGet)
(Ex37) Method(doGet)
(Ex38) methodRequires(doGet, req)
(Ex39) methodRequires(doGet, resp)
(Ex40) Data(req)
(Ex41) Data(resp)
(Ex42) dataType(req, HttpServletRequest)
(Ex43) dataType(resp, HttpSewletResponse)
(Ex44) Class(HttpSew1etRequest)
(Ex45) Class(HttpServ1etResponse)

An Ontological Formalization of Sofbvare Components and Web Services 121

2.3 Semantic API Description
Another explicit requirement of the Component ClassiJication and Discov-

ery, Semantics of Parameters, Selecting Service Functionality and Incompatible
Inputs and Outputs use cases is to model semantic API descriptions. The use
cases propose to model the meaning of methods and parameters in order to
allow for a more powerful search over a large unfamiliar API, for instance.

Our modelling so far already allows to achieve this goal. As depicted
in Figure 7.7, the meaning or behavior of a Method can be modelled via
0IO:expresses and a corresponding 0oP:Plan. We already gave an example,
namely the CustomerEntityBeanPlan, in (Ex22) on page 118. The semantics
of parameters, as opposed to their datatypes, can be modelled via 0IO:about
which can point to any concept in the ontology. Thus, it is possible to model
that the getPrice 0 method returns a specific Currency (a specialization of
DOLCE:AbstractRegion), for example.

(Ex46) Method(getPrice)
(Ex47) methodYields(getPrice, result)
(Ex48) Data(resu1t)
(Ex49) dataType(result, xsd:jloat)
(Ex50) OIO:about(result, Euro)
(Ex5 1) Currency(Euro)

Figure 7.7. Semantic API description.

We here introduce the notion of an lnterface in order to group methods
and parameters independently of the Classes they belong to (cf. (D14) and
(A5) below). The lnterface does not coincide with Java interfaces because it
allows to grasp additional information as explained above. In our ontology,
the lnterface has to be classified as Data as it cannot be executed, i.e., it does
not 0IO:express an 0oP:Plan. Different Classes may implement the same
lnterface as stated in (A6). In doing so, we are able to model that different
classes provide different names for methods with comparable functionality (e.g.,
getPrice 0 vs. getcost 0).

122 SEMANTIC MANAGEMENT OF MIDDLEWARE

(D14) Interface(x) =def Data(x) A Vm(inferfaceRequires(x, m) +

(3p(010:expresses(m,p) A OoP:Plan(p)) A
Vd(methodRequires(m, d) -t
3e(DOLCE:Particular(e) A OIO:about(d, e)))))

2.4 Workflow Information
The possibility of modelling workflow information, such as information

about the WebShopServlet invoking the CustomerEntityBean, is explic-
itly required by the use cases Transactional Settings, Secure Communication,
Analyzing Message Contexts and Detecting Loops in Interorganizational Work-
flows.

For modelling workflow information, we use and specialize the ontology
design pattern of the Ontology of Plans (cf. Figure 7.4 on page 112) which
in turn builds on Descriptions & Situations. We do so because the design
pattern allows abstracting from concrete, i.e., actually executed, workflows.
That means, we use ComputationalTasks, which are OoP:Tasks, to represent
invocations, the addition of two integers, etc., rather than the actual executions
of such tasks (which would be ComputationalActivities). Computational-
Tasks are grouped and linked via the 0oP:successor and 0oP:predecessor
associations in an 0oP:Plan (a DnS:SituationDescription).

The workflow information we need to model is twofold. First, we have
to model invocations between software. Second, we also need to model the
inputs and outputs of tasks because the Ontology of Plans does not provide
such capabilities.

Invocations Between Software
We start with two associations, viz., executes and accesses, to formalize

invocations between Software. Below, (D15) introduces executes as "short-
cut" between Software, such as Class or Method, and a ComputationalTask.
For example, the doGet 0 method of our WebShopServlet executes an in-
vocation task.

(D16) introduces accesses as "shortcut" between the ComputationalTask
and the Software or Data that is being called or modified by the task. For ex-
ample, the invocation task of the WebShopServlet accesses the Customer-
EntityBean. The sequence of executes and accesses can be further abbre-
viated by invokes which is declared as being transitive (cf. (D17) and (A7)).
Axioms (A8) and (A9) are introduced for convenience. Regarding (A8), we say

An Ontological Formalization of Software Components and Web Services 123

that also a Class executes a ComputationalTask when one of its Methods
executes this task. Regarding (A9), we state that invokes also holds when we
have succeeding tasks.

(D15) executes(x, y) =d,f Software(x) A ComputationalTask(y) A
30, ca, p(ComputationalObject(co) A ComputationalActivity(ca) A
OoP:Plan(p) A OIO:realizedBy(x, co) A OIO:expresses(x,p) A
DnS:defines(p, y) A DnS:sequences(y, ca) A
DOLCE:participantln(co, ca))

(D16) accesses(x, y) =,,,
ComputationalTask(x) A Data(y) A3ca, co(DnS:sequences(x, ca) A
ComputationalActivity(ca) A DOLCE:participantln(co, ca) A
ComputationalObject(co) A OIO:realizes(co, y))

(D17) invokes(x, y) =,,, 3z(executes(x, z) A accesses(2, y))

(A7) invokes(x, z) t invokes(x, y) A invokes(y, z)
(AS) executes(x, y) t

(executes(z, y) A Method(2) A DOLCE:properPart(x, z) A Class(x)
(A9) invokes(x, z) t

executes(x, y) A OoP:successor(y, t) A accesses(t, z)

In some environments, calls are executed on behalf of a user whose identity
can vary at run time or the authentication can be changed explicitly (called
the run-as paradigm). Our running example requires us to express the context
switch of the CustomerEntityBean, for instance. In order to model this kind
of information we introduce the association contextuser as shown below.

Revisiting our example, we have a ComputationalTask that models the
WebShopServletls call of the CustomerEntityBean. We also have a task
that models the modification of the Customer table on behalf of the bean. Note
that this task is executed with dbuser's credentials. In the examples below,
(Ex55) can be inferred from (Ex34), (Ex36), (Ex37), (Ex52), (Ex53), (Ex54),
(A7) and (AS).

(Ex52) ComputationalTask(Ca1lBean)
(Ex53) executes(doGet, CallBean)
(Ex54) accesses(CallBean, CustomerEntityBean)
(Ex55) (Ex34), . . . , (A8) invokes(WebShopSewlet, CustomerEntityBean)
(Ex56) ComputationalTask(ModifyTab1e)
(Ex57) executes(CustomerEntityBean, ModifyTable)
(Ex58) contextUser(dbuser, ModifyTable)
(Ex59) accesses(ModifyTable, CustomerTable)

124 SEMANTIC MANAGEMENT OF MIDDLEWARE

Inputs and Outputs
Besides invocations, we also need to model the lnputs and Outputs of

tasks. The Ontology of Plans does not provide such capabilities. lnputs and
Outputs are required when we want to represent the information of a WS-BPEL
workflow, for instance. lnputs and Outputs are DnS:Roles which are both
DnS:playedBy Data and DnS:definedBy an 0oP:Plan (cf. (D19), (D20)
and (A12)). The relationships between lnputs (Outputs) and Computational-
Tasks are modelled by inputFor (outputFor) as specified in (A10) and (A1 I) . ~
The difference between lnputs and Outputs is that the former must be present
before the latter (cf. (A13)).

(A10) inputFor(x, y) -+

DnS:modalTarget(x, y) A Input(x) A ComputationalTask(y)
(A1 1) outputFor(x, y) --+

DnS:modalTarget(x, y) A Output(x) A ComputationalTask(y)
(A12) Input(%) v Output(x) -+ 3p(OoP:Plan(p) A DnS:defines(p, x))
(A13) ComputationalTask(ct) -t Vdl, d2(Vi, o(inputFor(i, ct) A

DnS:playedBy(i, d l) A outputFor(0, ct) A DnS:playedBy(o, d2)) -+

3tl, t2(presentAt(dl, t l) A presentAt(d2, t2) A tl < t2))

As a concrete example, consider the Input for ModifyTable which would be
the Customer table (cf. (Ex60), (Ex61) and (Ex62) below).

(Ex60) Input (ModifyTableInput)
(Ex6 1) DnS:played By(ModifyTab1elnput , CustomerTable)
(Ex62) input For(ModifyTableInput, ModifyTable)

2.5 Access Rights and Policies
The requirement to model access rights and policies stems from the Access

Rights, Analyzing Message Contexts and Policy Handling use cases. In general,
access rights are required to state that access is granted for a specific user on a
specific resource. Policies can be regarded as a generalization of access rights.
They define high-level guidelines that constrain the behavior of an information
system.

We use and specialize Descriptions & Situations for modelling access rights
and policies. The design pattern represented by Descriptions & Situations
(cf. Figure 7.3 on page 11 1) provides us with the basic primitives of context

8 ~ o t h are specializations of DnS:modalTarget, viz., the generic association holding between DnS:Roles
and DnS:Courses.

An Ontological Formalization of Sofmare Components and Web Services 125

modelling, such as the notion of roles, which allows us to talk about subjects
and objects of a policy on the abstract level, i.e., independent of the entities that
play such roles. As we have learned in Section 1.2, page 110, Descriptions &
Situations therefore distinguishes between descriptive and ground entities.

In a first step, it is necessary to introduce further ground entities which are
required later on. (D21) below specifies a User as a special kind of Abstract-
Data which identifies a DnS:Agent. The intuition behind User is a user
account in an operating system. Hence, Users identify DnS:Agents which
are either D0LCE:AgentivePhysicalObjects or D0LCE:AgentiveSocial-
Objects. Most frequently, but not always, a natural person is associated with
such an account. We aggregate Users to a UserGroup by exploiting D0LCE:-
Collection in (D22).

In a second step, we specialize the descriptive entities of Descrip-
tions & Situations, viz., DnS:Roles, DnS:Courses, DnS:Parameters, and
DnS:SituationDescriptions as follows. First, we introduce two DnS:Roles
to represent the subject and the object of a policy in (D23) and (D24).
Policysubjects are DnS:AgentiveRoles and can be DnS:playedBy Users
or UserGroups. Policyobjects are DnS:NonAgentiveRoles and can be
DnS:playedBy Data. Second, we need to represent the predicate of a pol-
icy by a special kind of DnS:Course. (D6) on page 117 already intro-
duced ComputationalTask which meets this requirement. We further ag-
gregate such tasks to TaskCollections in (D25). The intuition behind Task-
Collections are the security "roles" in operating or database systems. That
means a Taskcollection groups ComputationalTasks, such as read, write or
execute. Third, we introduce Constraints as special kinds of DnS:Parameter.
The Com putationalTask or TaskCollections can be constrained in some way,
e.g., a Web service policy might state that an invocation is only possible with
Kerberos or X509 authentication (cf. (D26)). Finally, we construct a Policy-
Description, viz., aspecial kindof DnS:SituationDescription, from the afore-
mentioned concept^.^ Figure 7.8 provides an overview.

g ~ o t e that DnS:unifies is the generic association between DnS:SituationDescriptions and
D0LCE:Collections.

126 SEMANTIC MANAGEMENT OF MIDDLEWARE

It is worthwhile to spend some words on the DnS:attitudeTowards asso-
ciation between DnS:Roles and DnS:Courses. The DnS:attitudeTowards
association is a special kind of DnS:rnodalTarget and can be considered the
descriptive counterpart of the D0LCE:participantln association. It is used to
state attitudes, attention, or even subjection that an object can have with re-
spect to an action or process. In our case, DnS:attitudeTowards it is used
to state the relationship between PolicySubjects, as well as PolicyObjects,
and the ComputationalTask or Taskcollection. Descriptions & Situations
provides us with three initial specializations of DnS:attitudeTowards, viz.,
DnS:rightTowards, DnS:empoweredTo, and DnS:obligedTo. We further
refine DnS:rightTowards in (A14) below.

(A15) and (A16) infer the closure of all resulting rights considering User-
Groups and TaskCollections. A Policysubject is granted rights on all tasks
which are members of the Taskcollection. Similarly, a User is granted all
access rights which are granted for his UserGroup.

An analysis of the descriptor of our WebShopServlet (web. xml, cf. Exam-
ple 2.1 on page 23) lets us derive the following PolicyDescription. The HTTP

An Ontological Formalization of Sofiware Components and Web Services 127

Figure 7.8. The Policy Description as U M L class diagram. Grey classes represent ground
entities, white classes the descriptive entities o f Descriptions & Situations or specializations
thereof.

basic authentication allows anybody to perform an HTTP GET on the servlet.
We consider anybody as a UserGroup that has every User of the system as
D0LCE:member.

PolicyDescription(WebShopSewletPolicy)
DnS:defines(WebShopSewletPolicy, SewletCaller)
PolicySubject(SewletCaller)
UserGroup(anybody)
DnS:playedBy(SewletCaller, anybody)
DnS:defines(WebShopSewletPolicy, GET)
ComputationalTask(GET)
computationalRightTowards(SewletCaller, GET)
DnS:defines(WebShopSewletPolicy , SewletCallee)
PolicyObject(SewletCal1ee)
Class(WebShopSew1et)
DnS:playedBy(SewletCallee, WebShopSewlet)
DnS:obligedTo(SewletCallee, GET)

Core Ontology of Software Components (COSC)
In the last section we have presented a Core Software Ontology consisting of

fundamental concepts and associations such as software, data, users, policies
and so on. We separated the fundamental concepts in a core ontology to facilitate
reuse.

Although some of the modelling requirements are already met by the Core
Software Ontology, there remain further use cases that explicitly require the

128 SEMANTIC MANAGEMENT OF MIDDLEWARE

formalization of software component and Web service idiosyncracies. In this
section, we present a possible Core Ontology of Software Components based on
the Core Software Ontology that meets the remaining modelling requirements
relevant for software components, viz., Libraries and Licenses, Component
Profiles, and Component Taxonomies (cf. the application server use cases in
Chapter 4, Section 2.1, page 66).

We start by formalizing our understanding of the term "software component."
It requires special attention as there is a variety of interpretations that leads to
ambiguity. We also put libraries and licenses in this core ontology because one
of our use cases proposes to detect inconsistent configurations of components
and their required libraries. Finally, we define a component profile that ag-
gregates all relevant aspects of a component. We expect that this aggregation
makes browsing and querying for developers more convenient. The compo-
nent profile is envisioned to act as the central information source for software
components rather than having bits and pieces all over the place. We finish by
revisiting the Example 2.4 in Chapter 2, Section 3.2, and show how it can be
formalized.

3.1 Formalization of the Term "Software Component"
Software componentry is a loosely defined term for a software technology

proposing that software should be developed by glueing prefabricated compo-
nents together as in the field of electronics or mechanics. Software compo-
nentry also proposes encapsulating software functionality for multiple use in a
context-independent way, composable with other components and as a unit of
independent deployment and versioning. lo

Software components often assume the form of object-oriented classes con-
forming to a framework specification. However, software components differ
from classes. The basic idea in object-oriented programming is that software
should be written according to a mental model of the actual or imagined objects
it represents. Software componentry, by contrast, makes no such assumptions.

The framework specifications prescribe (i) interfaces that must be imple-
mented by components and (ii) protocols that define how components interact
with each other. Examples of framework specifications are Enterprise Jav-
aBeans (EJB) and the Component Object Model (COM) from Microsoft (cf.
also Chapter 2, Section 3.1).

The definitions below formalize this intuition of software component as
closely as possible. Assuming the object-oriented paradigm, (D30) below
states that a Softwarecomponent is a special kind of CS0:Class that con-
forms to a FrameworkSpecification. According to the definition above, a

'O~ource: Wikipedia, http: //en. wikipedia. org/wiki/Software-component, August 2005.

An Ontological Formalization of Software Components and Web Services 129

Frameworkspecification is (i) a D0LCE:Collection of CS0:lnterfaces and
(ii) a special kind of 0oP:Plan which specifies the interaction of components
(cf. (D28)). Conformance means that at least one CS0:lnterface prescribed
by the Frameworkspecification has to be implemented by the Software-
Component (cf. (D29)).

(D28) FrameworkSpecification(x) =def
OoP:Plan(x) A 3y(DOLCE:Collection(y) A DnS:unifies(x, y) A
Vz(DOLCE:member(y, z) -+ CSO:lnterface(z)))

(D29) conforms(~, y) =d,, CSO:Class(x) A FrameworkSpecification(y) A
3, c(CSO:lnterface(i) A DOLCE:member(c, i) A
DOLCE:Collection(c) A DnS:unifies(y, c) -+
CSO:implements(x, i))

(D30) SoftwareComponent(x) =d,,
CSO:Class(x) A 3y(conforms(x, y) A FrameworkSpecification(y))

Coming back to our running example, we would define the Customer-
EntityBean as a SoftwareComponent that conforms to the Enterprise-
JavaBeans Frameworkspecification. In essence, the EnterpriseJavaBeans
specification can be conceived as a set of Java interfaces (j avax . e j b . *).

(Ex76) SoftwareComponent(CustomerEntityBean)
(Ex77) FrameworkSpecification(EnterpriseJavaBeans)
(Ex78) c~nf~rm~(CustomerEntityBean, EnterpriseJavaBeans)

3.2 Libraries and Licenses
The Library Dependencies and Versioning and Licensing use cases require

the modelling of libraries and licenses. Both use cases discuss the problem of
conflicting libraries and incompatible licenses in the current configuration of an
integrated software development environment (IDE). In the case of libraries, a
l i b1 . j ar might conflict with a lib2. j ar in a specific version. For example,
such information can be obtained from expert knowledge or from public sources,
such as the RPM package manager." However, the check for conflicts still
remains a manual task. In the case of licenses, we find similar problems.
Typically, software libraries are released under specific licenses such as GPL,
LGPL, Apache, BSD, Public Domain, XFree86 or commercial closed source
licenses.12 The proliferation of different software licenses means increased
work for software developers. They have to check whether used libraries have
conflicting licenses.

"http: //www. rpm. org
I2http: / /WWW. gnu. org/philosophy/license-list . html

130 SEMANTIC MANAGEMENT OF MIDDLEWARE

Therefore, the use cases propose an automatic check for conflicting libraries
and incompatible licenses in an integrated software development environment
(IDE) at development time. In order to realize either use case, we introduce
the concepts of SoftwareLibrary and License in (D31) and (D32) below. A
SoftwareLibrary consists of a number of CS0:Classes and is classified as
CS0:Data because it cannot be executed as a whole. The concept License
is a special kind of Legalcontract as introduced in the Core Legal Ontology
[Gangemi et al., 2004~1.

(D31) SoftwareLibrary(x) =def

CSO:Data(x) A Vc(DOLCE:properPart(x, c) -+ CSO:Class(c))
(D32) License(x) =def

LegalContract(x) A 3y(CSO:Software(y) A DnS:involves(x, y))

Very often there are dependencies between libraries that are revealed only
during run time by ClassNotFoundExceptions. For example, a library
1 i b 1 . j ar might depend on 1 ib2. j ar which in turn depends on 1 ib3. j ar
and so forth. It is a very tedious task to keep track of such dependencies and,
additionally, to check whether there are conflicts between libraries in this de-
pendency graph. In order to reason with such information, we introduce the
following associations and axioms: First, the transitive IibraryDependsOn in
(A17) and (A 18) below. Second the symmetric IibraryConflictsWith in (A19)
and (A20). Finally, (A21) formalizes indirect conflicts.

The existence of incompatible licenses further complicates the situation.
Even though libraries in the dependency graph do not conflict, they might have
incompatible licenses. In order to reason with such information, we further
introduce the association releasedunder between SoftwareLibraries and Li-
censes in (A22), as well as the symmetric licenselncompatibleWith in (A23)
and (A24).

An Ontological Formalization of Sofmare Components and Web Services 13 1

As an example, let us assume the CustomerEntityBean requires
1 ib 1 . j ar. Adding 1 ib 1 . j ar to the classpath in turn requires 1 ib2 . j ar and
lib4. jar. Adding lib2. jar to the classpath additionally requires lib3. jar.
Furthermore, let us assume that lib4. jar conflicts with lib3. jar. Despite
the small number of libraries, the situation becomes quite complex. Compiling
and running the application will yield a run time exception. Given the mod-
elling below we can infer libraryConflictsWith(libl.jar, lib4.jar) because of
(A1 8), (A20) and (A21).

3.3 Component Profiles and Taxonomies
So far, we have formalized several different aspects relevant for a software

component such as interface and policy descriptions or plans. In this section we
further aggregate the knowledge in component profiles. We expect that such
an aggregation makes browsing and querying for developers more convenient.
The component profile is envisioned to act as the central information source for
a specific software component rather than having bits and pieces all over the
place. Furthermore, the component profiles can be specialized and aligned in
a taxonomy as required by the use cases Capability Descriptions, Component
Classijication and Discovery, Automatic Generation of Web Service Descrip-
tions, Transactional Settings and Secure Communication.

(D33) and (A25) define a Profile as follows: First, it aggregates
CSO:PolicyDescriptions, an OoP:Plan, the required SoftwareLibraries, the
implemented Interfaces and additional Characteristics of a specific Software
entity. Second, the link to the described Software is specified via the describes
association. (D34) specializes this definition to ComponentProfile.

Often, we need to express certain capabilities or features of components,
such as the version, transactional or security settings. For this purpose, we in-
troduce Characteristics on a Profile in (D35). It is expected that Component-
Profiles are specialized and put into a taxonomy. For example, we might de-
fine a DatabaseConnectorProfile as a ComponentProfile that provides for
specific Characteristics describing whether the underlying database supports

132 An Ontological Formalization of Sofmare Components and Web Services

transactions or SQL-99. A taxonomic structure further accommodates the de-
veloper in browsing and querying for ComponentProfiles in his system.

Finally, (A26) specifies the profiles association as a "catch-all" for
DnS:defines, DnS:unifies, OIO:about, as well as 0IO:expressedBy. This
is done for convenience in order to relieve the developer, who will certainly
have to deal with such information, from such modelling details.

The information grouped by a ComponentProfile might have different ori-
gins. For example, a specific PolicyDescription might be automatically ob-
tained from e j b- j ar . xml, while manual modelling or source code analysis
would result in an 0oP:Plan. Hence, it is important to model also information-
Timestamp and informationSource for parts of the ComponentProfile. We
omit their definition because both are simple attributes with xsd : s t r i n g .

As an example, we construct a profile for our CustomerEntityBean below.
We assume the bean requires l i b1 . j a r , implements the javax.ejb.EntityBean
interface and has a policy description.

(Ex88) ComponentProfile(CustomerBeanProJile)
(Ex89) describes(CustomerBeanProfile, CustomerEntityBean)

(Ex90) profiles(CustomerBeanProJile, 1ibl.jar)

(Ex91) informationTimestamp(libl.jar, 050805-9:45:21)
(Ex92) prof ile~(CustomerBeanProJi1e , javax. ejb. EntityBean)
(Ex93) CSO:Interface(javax.ejb.EntityBean)
(Ex94) prof ile~(CustomerBeanProJile, CustomerEntityBeanPolicy)
(Ex95) CSO:PolicyDescription(CustomerEntityBeanPolicy)
(Ex96) informationsou r~e(CustomerEntityBeanPolicy ,Jile://ejb-ja~xml)

An Ontological Formalization of Software Components and Web Services 133

3.4 Example
In this section, we revisit our running example (Example 2.1 on page 23) and

show how it can be formalized with our ontology. We already introduced some
of the instances in a piecemeal manner throughout the chapter. We collect the
relevant instances to construct PolicyDescriptions and Plans so that a simple
query can be used to detect if there are indirect permissions. An overview is
given in Figure 7.9.

The descriptor files of the WebShopServlet (web. xml) and the Customer-
Enti tyBean (e j b- j ar . xml) result in two CS0:PolicyDescriptions. The
third CS0:PolicyDescription below can be extracted from database metadata.

CSO:PolicyDescription(WebShopSewletPolicy)
profiles(WebShopSentletPo1icy , SewletCaller)
CSO:PolicySubject(SewletCaller)
DnS:playedBy(ServletCaller, anybody)
CSO:UserGroup(anybody)
profiles(WebShopSewletPo1icy , GET)
CSO:ComputationalTask(GET)
CSO:computationalRightTowards(SewletCaller, GET)
profiles(WebShopSewletPolicy , SewletCallee)
CSO:PolicyObject(SewletCallee)
DnS:playedBy(SewletCallee, WebShopSewlet)
CSO:Class(WebShopSewlet)
DnS:obligedTo(SewletCallee, GET)

CSO:PolicyDescription(CustomerEntityBeanPolicy)
profiles (CustomerEntityBeanPolicy , BeanCaller)
CSO:PolicySubject(BeanCaller)
DnS:playedBy(BeanCaller, anybody)
profiles(CustomerEntityBeanPolicy , CallBean)
CSO:ComputationalTask(CallBean)
CSO:computationalRightTowards(BeanCaller, CallBean)
profiles(CustomerEntityBeanPolicy , BeanCallee)
CSO:PolicyObject(BeanCallee)
DnS:playedBy(BeanCallee, CustomerEntityBean)
COSC:SoftwareComponent(CustomerEntityBean)
DnS:obligedTo(BeanCallee, CallBean)

CSO:PolicyDescription(DatabasePolicy)
profiles(DatabasePo1icy , DatabaseModifier)
CSO:PolicySubject(DatabaseModifier)
DnS:playedBy(DatabaseModi$er, dbuser)
CSO:User(dbuser)

134 SEMANTIC MANAGEMENT OF MIDDLEWARE

profiles(DatabasePo1icy , ModifyTable)
CSO:CornputationalTask(ModifyTable)
CSO:cornputationalRightTowards(DatabaseModifier, ModifyTable)
profiles(DatabasePolicy, ModifiedTable)
CSO:PolicyObject(ModiJiedTable)
DnS:playedBy(ModifiedTable, CustomerTable)
CSO:Data(CustomerTable)
DnS:obligedTo(Modi$edTable, ModifyTable)

Source code analysis or manual modelling yields the WebShopSewlet-
Plan and the CustomerEntityBeanPlan below. A context switch is repre-
sented by the CS0:contextUser association between CS0:User and C S 0 : -
ComputationalTask.

OoP:Plan(WebShopSewletPlan)
prof iles(WebShopSewletPlan, GET)
profiles(WebShopSewletPlan, CallBean)
CSO:accesses(GET, WebShopSewlet)
CSO:executes(WebShopSewlet, CallBean)
CSO:accesses(CallBean, CustomerEntityBean)
CSO:contextUser(anybody, CallBean)

OOP :Plan (CustomerEntityBeanPlan)
profiles(CustomerEntityBeanPlan, CallBean)
profiles(CustomerEntityBeanPlan, ModifyTable)
CSO:executes(CustomerEntityBean, ModifyTable)
CSO:accesses(ModifyTable, CustomerTable)
CSO:contextUser(dbuser, ModifyTable)

We can now define additional axioms to deduce all indirectly accessible
resources for a user. First, Axiom (A27) infers the directly accessible resources
r of a user u. The reader may note that axioms (A15) and (A16) on page 126
also infer the accessible resources which are a result of group memberships.
Second, Axiom (A28) infers indirectly accessible resources, i.e., ones that are
a result of a call with a context switch. With (A27) and (A28) we can infer
indirectly Accessi bleResou rce (CustomerTable , anybody) - a result which
otherwise would require tedious manual efforts.

pr
of

ile
s

dl

w
dl

S

ew
le

tC
al

le

G
E

T

S
ew

le
tC

al
le

e
ty
pe
 :
 P

ol
ic

yS
ub

ie
ct

-t

yp
e
: C

or
np

ut
al

io
na

lT
as

ty

pe
 :
 P

o
lic

yO
b

je
d

ob
lig

ed
To

i

[d
b

u
se

r
I

w
n

te
xt

u
se

r
ac

a
-ty

pe
 :
 u

se
r

Y
 co

m
pu

ta
tio

na
lR

ig
ht

To
w

ar
ds

ob

lig
ed

To

D
at

ab
as

eM
o

d
ifi

e
M

o
d

ifi
ed

T
ab

le

-t
yp

e
: P

ol
ic

yS
ub

je
ct

-t

yp
e

: P
ol

ic
yO

bj
ec

t

pr
of

ile
s

1' pr
of

ile
s

C
u

st
o

m
er

E
n

tit
yB

ea
n

P
la

n

ty
p

e:
P

la
n

F
ig

ur
e

7.
9.

U

M
L

 d
ia

gr
am

 o
f

th
e

so
ft

w
ar

e
co

m
po

ne
nt

 e
xa

m
pl

e.

136 SEMANTIC MANAGEMENT OF MIDDLEWARE

4. Core Ontology of Web Services (COWS)
In this section we present a possible Core Ontology of Web Services to

meet the remaining modelling requirements of service profiles and service tax-
onomies. The Core Ontology of Web Services is based on the Core Ontology
of Software Components presented in Section 3. We start by formalizing our
understanding of the term "Web service," introduce the notion of service pro-
files, revisit the motivating example (cf. Chapter 2, Section 3.2, page 30) and
show how it can be formalized.

4.1 Formalization of the term "Web service"
On the one hand, Web services are often revelations of functionality resid-

ing in a class or component. Application servers typically provide support to
automatically access the functionality via the standardized SOAP protocol and
the automatic generation of standardized WSDL interface descriptions. How-
ever, the same can be done with the Java Remote Method Invocation (RMI) or
CORBA although with different protocols and interface descriptions. On the
other hand, a Web service can be defined as a composition of other Web ser-
vices, e.g., by the Business Process Execution Language (WS-BPEL).'~ Again,
this can be done with software components in common workflow engines as
well.

So what is the difference between a software component and a Web service?
We argue that standardization in terms of Web protocols and descriptions seems
to be the major distinction. In any case, Web services are mandatorily accessible
via the SOAP protocol and expose an interface description according to WSDL.
This is in line with one of the many existing definitions:

"A Web service is a software system ident$ed by a URI, whose public in-
terfaces and bindings are defined and described using XML. Its definition can
be discovered by other software systems. These systems may then interact with
the Web service in a manner prescribed by its definition, using XML based
messages conveyed by internet protocols" [Booth et al., 20041

However, there are dozens of other, partly contrary, definitions of the term
Web service. In [Gangemi et al., 2003bl we list several definitions and conclude

I3http: //www- 128. ibm. com/developerworks/library/specif icatiodws-bpel/

An Ontological Formalization of Sofmare Components and Web Services 137

that a concise axiomatization of such an overloaded term is necessary to avoid
confusion among developers and ontology users.

(D36) follows the definition above and specifies WebService as a special
kind of CS0:Software which is 0IO:orderedBy a WSDLEncoding. The
WSDLEncoding is an 0I0:lnformationEncodingSystem as defined in the
Ontology of Information Objects. For our middleware domain, (A29) further
constrains the intended meaning of WebService by axiomatizing that it is
either a revelation of functionality residing in a C0SC:SoftwareComponent
or a combined service specified by an 0oP:Plan.14

(D36) WebService(x) =def

CSO:Software(x) ~b'y(OIO:orderedBy(~, y) A y = WSDLEncoding)

4.2 Service Profiles and Taxonomies
The Analyzing Message Contexts, Selecting Service Functionality, Relating

Communication Parameters, Aggregating Service Information and Quality of
Service use cases require the modelling of service profiles and taxonomies.
Similar to COSC:ComponentProfiles, we group the different descriptions
relevant for a Web service in a ServiceProfile in (D37) below. We expect that
such a grouping makes browsing and querying for developers more convenient.
The information grouped by a ServiceProfile might have different origins.
Hence, we also add informationTimestamp and informationSource as simple
attributes to parts of the profile. We omit their definition because both are simple
attributes with xsd : string. Furthermore, ServiceProfiles can be specialized
and put into a taxonomy.

ServiceProfiles differ from C0SC:ComponentProfiles in two ways:
First, they can have QualityOfService parameters. QualityOfService
parameters are specializations of C0SC:Characteristics and defined on
ServiceProfiles as shown in (D38). Second, the ServiceProfile necessarily
0IO:describes a WebService as opposed to C0SC:ComponentProfiles
which C0SC:describe C0SC:SoftwareComponents (cf. (A29)).

I 4 ~ o t e that the symbol @ represents the logical xor (exclusive or) connective.

138 SEMANTIC MANAGEMENT OF MIDDLEWARE

4.3 Example
In this section we revisit the Example 2.4 in Chapter 2, Section 3.2, page

30, and show how it can be formalized with our ontology. The WS-BPEL
process description can be parsed and relevant information can be extracted
leading to an 00 P: Plan consisting of several C o m putationalTasks. Figure
7.10 provides an overview.

ServiceProfile(WebShopProji1e)
C0SC:descr i bes(WebShopProjile, WebShop WS)
WebService(WebShopWS)
COSC:profiles(WebShopProjile, WebShopPlan)
OoP:Plan(WebShopPlan)
COSC:profiles(WebShopPlan, checkAccount)
CSO:executes(WebShopWS, checkAccount)
OoP :ComplexTask(checkAccount)
COSC:profiles(WebShopPlan, CallVisaWS)
OoP:ComputationalTask(CallVisaWS)
COSC:profiles(WebShopPlan, CallMastercardWS)
OoP:ComputationalTask(CallMastercardWS)
WebService(VisaWS)
WebService(MastercardWS)
0oP:successor(checkAccount, CallVisa WS)
0 o P : ~ ~ ~ ~ e ~ ~ 0 r (c h e c k A c c o u n t , CallMastercardWS)
CSO:accesses(CallVisaWS, Visa WS)
CSO:accesses(CallMastercardWS, MastercardWS)

Furthermore, the WS-Policy document of the external Mastercard service
(cf. Example 2.5 on page 30) can be parsed and a corresponding CS0:Policy-
Description created. Chapter 9, Section 3, discusses the procedure of how to
obtain the instances below from WS-Policy documents.

ServiceProfile(MastercardProji1e)
COSC:describes(MastercardPro$le, MastercardWS)
COSC:profiles(MastercardProjile, MastercardPolicy)
CS0:PolicyDescription (MastercardPolicy)
COSC:profiles(MastercardPolicy, MastercardCaller)
CSO:PolicySubject(MastercardCaller)
DnS:playedBy(MastercardCaller, anybody)
CSO:UserGroup(anybody)
COSC:profiles(MastercardPolicy , CallMastercardWS)
CSO:computationalRightTowards(MastercardCaller, CallMastercardWS)
COSC:profiles(MastercardPolicy , MastercardCallee)
CSO:PolicyObject(MastercardCallee)

An Ontological Formalization of Software Components and Web Services 139

DnS:playedBy(MastercardCallee, MastercardWS)
COSC:pr~file~(MastercardPolicy, AuthenticationProtocol)
CSO:Constraint(AuthenticationProtocol)
DnS:requisiteFor(AuthenticationProtocol, CallMastercardWS)
DnS:valuedBy(AuthenticationProtocol, AuthenticationProtocolValue)
AuthenticationProtocolValue(~) -+ DOLCE:AbstractRegion(~)
AuthenticationProtocolValue(Kerberos)
AuthenticationProtocolValue(X509)

We can now introduce axiom (A30) below to infer all WebServices which
CS0:invoke other WebServices with attached CS0:PolicyDescription.
With (A9) on page 123 and executes(WebShopWS,checkAccount),
O ~ P : ~ ~ ~ ~ e ~ ~ ~ r (c h e c k A c c o u n t , CallMastercardWS) and
CS0:accesses (CallMastercardWS, MastercardWS) we can entail
invokesWebServiceWithPoli~y(WebShopWS, MasterCardWS). With-
out semantic management, obtaining this result would require tedious manual
analyses of the WS-BPEL and WS-Policy descriptors.

(A30) invokesWebServiceWithPolicy(x, y) t
CSO:invokes(x, y) A WebService(x) A WebService(y) A
COSC:describes(sp, y) A ServiceProfile(sp) A
COSC:profiles(sp, pd) A CSO:PolicyDescription(pd)

5. Proof of Concept
The chapter proposed the design of an appropriate management ontology.

We have defined appropriateness at the beginning of the chapter as follows: (i)
the management ontology should meet all the modelling requirements derived
from our use cases, (ii) it should achieve high quality according to the ontology
quality criteria and (iii) it should enable reuse in specific platforms and reduce
modelling efforts to a minimum. In this section, we detail where and how our
management ontology responds to (i) , (ii) and (iii).

5.1 Meeting the Modelling Requirements
Tables 7.1 and 7.2 summarize which parts of the management ontology meet

the requirements. The requirements comprise modelling (i) libraries, licenses,
component profiles, component taxonomies, API descriptions, semantic API
descriptions, access rights and workjlow information of software components
and (ii) service profiles, sewice taxonomies, policies, workjlow information,
API descriptions, as well as semantic API descriptions of Web services.

dl
M

as
te

rc
ar

d
W

S

A

or
of

ile
s

I

de
sc

ri
be

s
M

as
te

rc
ar

d
P

ro
fil

e

F
ig

ur
e

7.
10

.
U

M
L

 d
ia

gr
am

 o
f t

he
 W

eb
 s

er
vi

ce
s e

xa
m

pl
e.

An Ontological Formalization of Sofware Components and Web Services 141

Table 7.1. Modelling requirements for software components and the parts of the management
ontology that meet the requirements.

Table 7.2. Modelling requirements for Web services and the parts of the management ontology
that meet the requirements. c-'

5.2 Higher Quality
Besides meeting the requirements, a remaining question has been 11.2: How

to ensure high quality? Throughout the axiomatization, we have approximated
the intended models of our universe of discourse as closely as possible. In
particular, we have strived to avoid the typical shortcomings of common on-
tologies as outlined in Chapter 5, Section 3, viz., conceptual ambiguity, poor
axiomatization, loose design and narrow scope. In the following we give some
examples how the shortcomings are eliminated.

Conceptual Disambiguation
We have learned in Chapter 5, Section 3.1, that common ontologies such as

OWL-S [Martin et al., 20041 and our initial ontology of software components
[Sabou et al., 20041 suffer from conceptual ambiguity. An example is the notion
of OWL-S:Service which is defined twice and differently in the specification.
In turn, both definitions stand in conflict with the axiomatization of the concept

142 SEMANTIC MANAGEMENT OF MIDDLEWARE

in the ontology. In our initial ontology of software components, we have found
a similar dilemma regarding the plethora of meanings and definitions of terms,
such as component, software component or software module. Both ontologies
fail to convey their intended meanings of such terms and leave the interpretation
to the ontology user.

In contrast to such commonly built ontologies we have captured the intended
meanings of concepts and associations as precisely as possible. Our definition
of terms such as Web service (Definition (D36) on page 137) or software com-
ponent (Definition (D30) on page 129) are in line with the natural language
definitions prevailing in the middleware community. Comparing both defini-
tions makes evident that very few concepts actually differ when "upgrading"
from software components to Web services. Only minor extensions to the Core
Software Ontology are required to capture the differences between software
components and Web services.

While our definitions of the terms Web service and software component may
not be the only ones, the fact that they are highly axiomatized allows comparing
them to alternative definitions and allows fostering discussions on alternative
conceptualizations. We argue that this will enable mutual understanding which
is crucial for information integration of any kind.

Increased Axiomatization
Common ontologies are often reduced to a simple taxonomy with domain and

range restrictions on associations. OWL-S and our initial ontology of software
components are no exceptions as demonstrated in Section 3.2 of Chapter 5.
An example are the OWL-S:ControlConstructs which define how composite
processes are combined.

In our management ontology we have made use of the Ontology of
Plans which provides extensive axiomatization of 0oP:Tasks and subcon-
cepts thereof. 0oP:Tasks are directly comparable to the OWL-S:Control-
Constructs, but provide a heavyweight axiomatization. An example is
SynchroTask (an instance of 0oP:ControlTask) which matches the concept
of OWL-S:Join in the OWL-S:SplitJoin control construct. A SynchroTask
joins a set of tasks after a branching and waits for the execution of all (except
the optional ones) tasks that are direct successors to a ConcurrencyTask or Any-
OrderTask. Below we give the axiomatization of the SynchroTask as introduced
in [Gangemi et al., 2004bl.

ControlTask(SynchroTask) -+ 3tl , tz, t3 (tl = ConcurrencyTask V tl =
AnyOrderTask) A S U C C ~ S S O ~ (~ ~ , x) A (ComplexTask(t2) V ActionTask(t2)) A
(ComplexTask(t3) V ActionTask(t3)) A directSuccessor(t2, SynchroTask) A
directSuccessor(t3, SynchroTask)

An Ontological Formalization of Software Components and Web Services 143

Another example is the OWL-S:components association, which is used to
relate OWL-S:ControlConstructs to their components. In OWL-S this asso-
ciation is described merely as a subrelation of owl:Property with a domain
of OWL-S:ControlConstruct. The Ontology of Plans exploits the D0LCE:-
temporaryComponent association which has a firm foundation as a special
kind of the more basic D0LCE:component mereological association and
D0LCE:partlyCompresent temporally indexing association. Both are char-
acterized by formal restrictions on their application to other basic concepts.

Improved Design
In our management ontology we propose to use contextualization as a de-

sign pattern. Contextualization allows us to move from monolithic component
or service descriptions to the representation of different, possibly conflicting
views with various granularity. The Descriptions & Situations ontology module
provides us with the basic primitives of context modelling such as the notion
of roles, which allows us to talk about inputs and outputs on the abstract level,
i.e., independent of the objects that play such roles.

Description

Figure 7.11. Solution to the attribute binding problem. Data can play both the role of an Input
and an Output at the same time. Inputs and Outputs can be linked to ComputationalTasks in
a Plan. White classes represent descriptive entities, grey classes represent ground entities.

Using this pattern results in a much more intuitive representation of attribute
binding than in OWL-S with clearly defined semantics and scoping provided by
Descriptions & Situations. Attribute binding in OWL-S is necessary to express,

144 SEMANTIC MANAGEMENT OF MIDDLEWARE

e.g., that the output of a process is the input to another process as presented in
Figure 5.4 on page 90. In our ontology, inputs and outputs can be modelled
as DnS:Roles which serve as variables. Thus, CS0:Data can play multiple
roles within the same or different descriptions. It is natural to express that the
given CS0:Data is output with respect to one process, but input to another (cf.
Figure 7.1 1).

Wider Scope
As we have seen in Chapter 5, Section 3.4, components and services exist on

the boundary of the world inside an information system and the external world.
Web services, in particular, may carry out operations to support a real-world
service. Functionality, which is an essential property of a service, then arises
from the entire process that comprises computational, as well as real-world
activities.

The distinction between information objects, events and physical objects is
not explicitly made in most ontologies. In our management ontology this sepa-
ration naturally follows from the use of DOLCE and the Ontology of Informa-
tion Objects, where the distinction is an important part of the characterization of
concepts. In particular, it becomes possible to be more precise about the kinds
of relationships that can occur among objects or between objects and events.

Figure 7.12. Using the Ontology of Information Objects allows us to model the relationship
between a user in an information system and its corresponding agent (e.g., a natural person).

For example, we can distinguish among a physical object (such as a natural
person), an information object (such as user in an information system) and
represent the link between them. The capabilities provided by our ontology

An Ontological Formalization of Sofmare Components and Web Services 145

are shown in Figure 7.12. It is worthwhile to explicate such differences, e.g.,
when we want to infer the total of access rights granted for a natural person
who might have several users in and across information systems.

5.3 Enabling Reuse
Finally, we have designed the management ontology in a way to be platform-

independent and as specific as possible at the same time. The answer to the
corresponding research Question 11.3 How to decrease modelling efforts and
enable reuse? is to have a core ontology that can easily be reused and specialized
in a concrete platform.

The following three steps have to be taken in order to allow for reuse in a
specific platform: (i) specialization of the core concepts and associations to
reflect the idiosyncracies of the platform. For example, we have to introduce
EnterpriseBean as a special kind of C0SC:SoftwareComponent in a J2EE-
based platform. The result of this step is a domain, reference and heavyweight
version of our management ontology. Step (ii) removes concepts and associa-
tions that have been introduced merely for reference purposes. As an example,
it is unlikely and not required to model particular ComputationalObjects or
ComputationalActivities for the reasoning at run time. Both were introduced
to better explain concepts such as Software or Data. The result is a domain,
application and heavyweight version. Finally, step (iii) requires a decision for
an executable ontology language that can be reasoned with at run time. Ac-
cordingly, the axiomatization has to be adapted to this language. This might be
a description logic, such as OWL DL, which is less expressive than the modal
logic S5. The result of this step is a domain, application and lightweight version
of the management ontology.

In fact, Part I11 reuses and specializes the management ontology according
to the three steps. After designing and implementing an ontology-based appli-
cation server in Chapters 8 and 9, Chapter 10 discusses the three steps in more
detail.

6. Summary
In this chapter we have been concerned with the design of an appropriate

management ontology founded on a modelling basis. The modelling basis
consists of DOLCE and three of its modules, viz., Descriptions & Situations,
the Ontology of Plans and the Ontology of Information Objects. All of them
have been introduced in Section 1. Subsequently, we have contributed a Core
Software Ontology Section 2, which formalizes fundamental concepts of the
computational domain. The Core Software Ontology acts as a common basis
for the Core Ontologies of Software Components and Services which have been
built in Sections 3 and 4, respectively. Finally, Section 5 showed (i) where we

SEMANTIC MANAGEMENT OF MIDDLEWARE

have met the modelling requirements derived from our use cases, (ii) how we
have achieved high quality according to our ontology quality criteria and (iii)
how we have enabled reuse in specific platforms.

In contrast to commonly built ontologies we have avoided their typical short-
comings of conceptual ambiguity, poor axiomatization, loose design and nar-
row scope. We have captured the intended meanings of concepts and association
as precisely as possible. Our definition of terms such as "software component"
or "Web service" are in line with the natural language definitions prevailing
in the middleware community. Comparing both definitions makes evident that
very few concepts actually differ when "upgrading7' from software components
to Web services. We argue that our concise axiomatization will enable mutual
understanding which is crucial for information integration of any kind.

PART I11

REALIZATION OF SEMANTIC MANAGEMENT

Chapter 8

DESIGN OF AN
ONTOLOGY-BASED APPLICATION SERVER

In Part I1 we have been concerned with answering the Main Question 11:
How to build a suitable management ontology? As a result, we have obtained
a high-quality management ontology with reference, heavyweight and core
characteristics, that meets all the modelling requirements derived from the use
cases in Chapter 4, Section 2, page 65.

The ontology is a contribution in its own right. We have disambiguated
overloaded terms such as "software component" or "Web service" by a concise
axiomatization, making the ontology ideal for reference purposes. However,
the ontology is merely a passive object. An inference engine is required to
enable querying and reasoning with the semantic descriptions of components
and services. In most cases, inference engines are based on logic calculi, which
basically consist of a set of syntactic derivation rules. Furthermore, a whole
infrastructure is required to embed the inference engine in and to obtain, model
and use the semantic descriptions. We have to choose a specific platform and,
ideally speaking, an existing ontology tool suite. Additional steps are required
to reuse our management ontology in this specific platform and to adapt it to
the idiosyncracies of the tool suite. It is the purpose of this part to elaborate on
all these issues as a response to the Main Question I11 from the Introduction:
How to realize semantic management of middleware?

We begin this chapter by discussing general design issues. In Section 1,
we elicit where to apply the inference engine, thus answering the Question
111.1: What is a suitable target platform? Besides the obvious platform of
an application server, the inference engine can also be applied in workflow
management systems, software IDE's, Web service composition engines and
a lot more. Eventually, we choose an application server because many use
cases can be realized. Section 1 also answers the Question 111.2: Who provides
semantic descriptions? The number of manually provided descriptions has

150 SEMANTIC MANAGEMENT OF MIDDLEWARE

to be kept as small as possible because developers and administrators do not
want to adopt additional tasks. Hence, we elicit further options on how to
arrive at semantic descriptions of components and services. We continue in
Section 2 by designing an ontology-based application server in a piecewise
manner. This comprises a careful elicitation of requirements and, subsequently,
meeting the requirements by a suitable architecture. Section 2 concentrates on
the semantic management of software components, whereas Section 3 focuses
on the semantic management of Web services. Basically, the realization of
semantic management of Web services boils down to an extension of the server.

Parts of this chapter have been published in conference proceedings and
journals. The requirements for the application server, as well as its architecture,
are taken from [Oberle et al., 2005dl and [Oberle et al., 2004a,Oberle, 20041,
respectively. Possible platforms and the elicitation on how to apply the inference
engine originate from [Oberle et al., 2005al.

1. General Design Issues
Our management ontology meets the modelling requirements put forward

in our use cases (cf. Chapter 4, Section 2). We have concisely defined its
concepts and associations by a rich axiomatization. For every ontology-based
application, however, an inference engine is required to enable the querying
and reasoning with semantic descriptions. An inference engine (also known as
reasoner) implements a calculus for the underlying logic which is defined by
a set of syntactic derivation rules. The general purpose of the inference engine
is to derive answers from semantic descriptions and to check an ontology for
consistency. [Horrocks and Patel-Schneider, 20041

In this section, we discuss where to apply the inference engine in 1.1, followed
by an elicitation of potential sources of semantic descriptions in 1.2. Finally,
we discuss how to integrate the inference engine in the middleware control in
Section 1.3.

1.1 Possible Platforms
The first set of use cases presented in Chapter 4, Section 2, mainly focus on

the semantic management of software components. It is the primary choice to
integrate the inference engine in an application server to realize this set of use
cases because application servers typically foster component-based software
development. However, this section discusses additional platforms for two
reasons: (i) the platform for the second set of use cases, i.e., the ones dealing
with Web services, is not obvious at all and (ii) other platforms may benefit as
well from semantic management, making it worthwhile to elaborate on them.

Application Servers We have already discussed application servers in Chapter
2, Section 3.1. Application servers are ideal as a platform to integrate the

Design of an Ontology-based Application Sewer 151

semantic management of software components. In addition, they typically
provide Web service support and, thus, can also be considered for some of
the Web service use cases. The inference engine cannot only become an
integral part of J2EE-based application servers, such as IBM Websphere or
JBoss, but also of Microsoft .NET.

Software IDE's An integrated development environment (IDE) is an applica-
tion or a set of tools that allows a programmer to write, compile, edit and, in
some cases, test and debug within an integrated, interactive graphical user
interface. The most prominent examples are Eclipse, JBuilder or Microsoft
Visual Studio.

IDE's are possible platforms because some of the use cases require infor-
mation about the source code. The internal datamodels of the IDE can be
leveraged to obtain such information. Information about calls or excep-
tions can be easily obtained and integrated into the ontology as semantic
descriptions.

Application Management Systems The infrastructure that manages the
whole bandwidth from network monitoring to software distribution to the
desktop is called an enterprise application management system. Examples
of commonly used application management systems are HP OpenView,
Computer Associates Unicenter and IBM Tivoli.

Such systems are a possible target platform because management of
middleware-based applications is a part of application management (cf. re-
lated work in Chapter 11, Section 1 for a detailed discussion). Some of
our use cases of semantic management of middleware are shared by the
application management use cases.

Web Service Management Systems Application management is currently
extended to Web services. Web services management defines the man-
ageability model for managing Web services as a resource and explains how
to describe and access that manageability (cf. also related work in Chapter
11, Section 1).

Such management systems share some of our use cases. Integrating seman-
tic technology makes them even more powerful by reasoning capabilities.
It is thus worthwhile to regard them as a possible platform. Existing appli-
cation management systems, such as HP OpenView, already support Web
services management.

Workflow Management Systems Workflow management systems (WfMS)
facilitate the definition and maintenance of the integration logic of dis-
tributed applications (cf. Chapter 2, Section 3.1). Business processes are

152 SEMANTIC MANAGEMENT OF MIDDLEWARE

formally defined as a workflow and executed by a workflow engine. Work-
flows are seen as software building blocks for "programming in the large"
because they compose large software modules which are typically entire
applications. Examples of leading commercial workflow systems include
IBM Websphere MQ Workflow and Microsoft BizTalk Orchestration.

Reasoning with workflow information is proposed by some of the use cases
in Chapter 4, Section 2. Therefore, workflow management systems can
also benefit from semantic technology to facilitate the management of some
tasks.

Web Service Composition Engines Web service composition engines are
similar to workflow management systems and mainly use WS-BPEL (cf.
Chapter 2, Section 3.2) as a process specification language. Correspond-
ing BPEL-engines care for executing the composite services. Examples
are active^^^^,' ~ e x e e ? or the BPEL engines that ship with application
servers.

We believe that Web service composition engines are the primary choice as
a platform for the semantic management of Web services. The reason is that
they allow for the realization of all of the Web services use cases introduced
in Chapter 4, Section 2.

For the remainder of this part we limit ourselves to the integration of an
inference engine in an application server. We do so because of the following
reasons: (i) although a Web service composition engine allows realizing all
the Web services use cases, it is not suited for the semantic management of
software components. Regarding both the semantic management of software
components and of Web services, application servers allow the realization of
most of our use cases. (ii) the scenario discussed in Chapter 4, Section 1.1, on
page 57, proposes an Application Sewer for the Semantic Web which we build
in the remainder of this chapter.

1.2 Obtaining Semantic Descriptions
After having decided where to use the inference engine, namely, in an appli-

cation server, it is necessary to elaborate on the Question 111.2: Who provides
semantic descriptions? Manual modelling efforts have to be kept as small as
possible because the developer does not want to adopt further tasks when he
or she already is overburdened by the complexity of the middleware. We have
been elaborating on this issue at the beginning of Chapter 4 where Figure 4.1 on
page 56 introduces the trade-off between management and modelling efforts.

'http: //www . activebpel . org/
'http: //bexee . sourcef orge . net

Design of an Ontology-based Application Server 153

It is necessary to identify potential sources which allow us to (semi) auto-
matically obtain semantic descriptions. Obtaining comprises: (i) reading and
parsing of the source, (ii) extraction of relevant information and (iii) integrating
this information as semantic descriptions into the inference engine and ontol-
ogy. This is quite a simple task given that most descriptors are in XML syntax.
Also, the implementation of such mappings has to be undertaken only once.
We provide ideas for potential sources as follows:

Manual Modelling The amount of semantic descriptions that are provided
manually by the software developer must be minimal because software de-
velopers will not be very willing to adopt a large new paradigm at a time when
they are just getting used to deployment and WS* descriptors. However,
not all aspects can be obtained from existing sources. Additional manual
modelling will always be required, e.g., to establish the link between users
in an information system and the corresponding natural person. Additional
manual modelling is realized by ontology editors and is supplementary to
the other possibilities.

Deployment and WS* Descriptors A great deal of semantic descriptions can
be obtained from deployment and WS* descriptors. It is a one-off endeavor
to code the obtaining of such descriptors (i.e., to code the parsing, the ex-
traction of relevant tags and the mapping from the tags to concepts and
associations of our management ontology). In Chapter 9, Section 3, on
page 180, we sketch an example for a mapping from WSDL, WS-BPEL
and WS-Policy descriptors to concepts and associations of the management
ontology.

Source Code Annotations Recently, source code annotations have become a
popular method to supplement or even replace XML descriptors. Source-
code annotations are of advantage because of the simpler maintenance.
XDoclet is an example. It integrates information from different deploy-
ment descriptors in JavaDoc comments [Walls and Richards, 20031. If
XDoclet is put in place, the tags can be parsed and integrated instead of
the several deployment descriptors they replace.3 Very similar to the idea
of XDoclet, the recent JSR 181, entitled "Web services metadata for the
Java platform" [Trezzo and Mihic, 20041, defines a standard way to build
and deploy Web Services without learning and implementing generalized
API's and deployment descriptors. Proprietary efforts, such as JBoss.Net
and also Microsoft's .NET IDE, take a similar approach. Furthermore, Java
5.0 standardized the syntax of JavaDoc annotations, which further simplifies
obtaining such information.

3http: //xdoclet . sourcef orge . net/xdoclet/index . html

154 SEMANTIC MANAGEMENT OF MIDDLEWARE

Programme Code Software IDE's internal data models are aware of how ex-
ceptions are thrown, invocations across classes, required libraries and a lot
more. The IDE's maintain and use this information in their internal data-
models. For an open-source IDE such as Eclipse, it is fairly simple to write
a plug-in that obtains such information.

Application Management Descriptors Application Management Systems
obtain information about managed applications and resources in the form
of Management Information Bases (MIB). MIB's are databases that contain
the hierarchical order of all of the managed objects. Each managed object
in a MIB has a unique identifier. The identifier includes the type (such as
counter, string, gauge or address), access level (such as readlwrite), size
restrictions and range information of the object. Similarly, the Common
Information Model (CIM) is a data model of an implementation-neutral
schema for describing overall management information in an enterprise en-
vironment. Some of the information stored there can also be obtained for
our purposes (cf. related work in Chapter 11, Section 1.2, for a detailed
discussion).

Semi-automatic Annotation [Patil et al., 2004, Hess and Kushmerick,
2003, Agarwal et al., 20041 introduce frameworks for the semi-automatic
generation of semantic descriptions of Web services. For example, they
propose a matching algorithm between the XML-Schema types of a WSDL
description and a given domain ontology. The approaches are very promis-
ing to semi-automatically obtain semantic descriptions.

1.3 How to Integrate the Inference Engine?
In the previous section, we have identified potential sources for obtaining

semantic descriptions. The next step is to elaborate on the different ways of
using the inference engine. The different possibilities of how to integrate the
inference engine into the middleware control are discussed in the following
paragraphs. They clarify the different usages for building our ontology-based
application server. Note that the approaches can be realized in parallel.

Reverse Engineering The reverse engineering approach is non-invasive and
does not intervene in the existing infrastructure, i.e., existing descriptor files
are still fed into their corresponding engines (e.g., into EJB containers or
Web service composition engines). It is still necessary for the developer
to familiarize and work with all the descriptor files. However, they are
parsed and integrated into the inference engine by a metadata collector (cf.
Figure 8.1). Hence, the developer is enabled to query and reason with such
information.

Design of an Ontology-based Application Sewer

Deployment WS'
descriptors descriptors

Source code
annotations

1 Integrate as semantic descriptions
4

Figure 8.1. The reverse engineering approach applies a metadata collector to obtain semantic
descriptions, i.e., to parse potential sources, extract relevant information from them and integrate
them into the inference engine and ontology.

Model-Driven Deployment (MDD) In this approach, semantic descriptions
are used to generate the component and WS* descriptors. The idea is to
have one common information source, viz., the inference engine and ontol-
ogy, which centralize maintenance instead of having dozens of deployment
and WS* descriptor files. The developer and administrator do not have to fa-
miliarize and to maintain the descriptor files. The descriptors are generated
automatically from the semantic descriptions of components and services.
Querying and reasoning with the management ontology for the developer
and administrator is possible, too. The descriptor files are still fed into their
corresponding engines.

Deployment
descriptors

WS*
descriptors

Figure 8.2. The model-driven deployment approach generates the descriptor files out of the
inference engine and ontology

156 SEMANTIC MANAGEMENT OF MIDDLEWARE

We call this approach model-driven deployment as it is similar to the idea
of model-driven architectures [Mellor et al., 20041, where a platform-
independent conceptual model is used to generate platform-specific code.
It is also similar to the approach of XDoclet [Walls and Richards, 20031.
XDoclet is an open source code generation engine. It enables "attribute-
oriented programming" for Java. XDoclet parses source files and generates
deployment descriptors or source code from them. These files are generated
from templates that use the information provided in the source code and its
JavaDoc tags.

Ontology Run Time The last approach, labelled ontology run time, disposes
the idea of several descriptor files and sets the inference engine and ontol-
ogy as central information source in an application server. The remaining
infrastructure, such as EJB containers or Web service composition engines,
has to be adapted accordingly. That means required information is read
from the inference engine and ontology and not from deployment descrip-
tors. Putting aside the additional effort of adapting the infrastructure, run
time information (e.g., dynamic quality of service parameters) can now be
integrated and reasoned with, too.

Semantic
descriptions

Figure 8.3. Thc ontology run time approach disposes the idea of descriptor files and puts the
inference engine and ontology as central information source in the application server.

2. Semantic Management of Software Components
So far, we have decided to apply the inference engine in an application server,

have identified potential sources for the semantic descriptions and have clarified
the different ways of using the inference engine. In this section, we propose a
way to realize the semantic management of software components by designing
an ontology-based application server. We first identify requirements for such
a server in Section 2.1. We continue by deriving the design in a piecemeal
manner in 2.2,2.3 and 2.4. The resulting server is rather generic but provides a
number of components to support the application development for the Semantic
Web.

Design of an Ontology-based Application Sewer 157

2.1 Requirements

Requirements for our ontology-based application server for the Semantic
Web are twofold. On the one hand, they are derived from our scenario in-
troduced in Chapter 4, Section 1.1, on page 57. On the other hand, they are
derived from the use cases in Chapter 4, Section 2.1, on page 65 that focus on
the semantic management of software components.

The scenario introduced in Chapter 4, Section 1. I, deals with the particular
situation of application development for the Semantic Web. An infrastructure
is required that facilitates plug'n'play engineering of ontology-based software
modules and, thus, the development and maintenance of comprehensive Se-
mantic Web applications. We propose the design of an Application Server for
the Semantic Web (ASSW), extending the functionality of common application
servers by supporting application development for the Semantic Web. The aim
is to facilitate the reuse of existing software modules, e.g., ontology stores,
editors or reasoners, to coordinate the information flow between such mod-
ules, to broadcast events between different modules and to translate between
ontology-based data formats.

The requirements derived from the scenario can be grouped as follows: First,
such a server should respond to the static aspects of the Semantic Web layer cake
(cf. Figure 4.2 on page 58). Second, the Semantic Web's dynamic aspects (also
depicted in Figure 4.2 on page 58) result in another group of requirements, viz.,
finding, accessing, modifying and storing of data, transactions and rollbacks,
evolution and versioning, monitoring, as well as inferencing and verification.
Third, clients, e.g., portal applications or ontology editors, may want to connect
remotely to the server by different protocols and must be properly authorized.
Hence, another group deals with connectivity and security. Fourth, the system
is expected to facilitate an extensible and reconfigurable infrastructure. This
set of requirements, therefore, deals with the flexible handling of modules.

The use cases introduced in Chapter 4, Section 2.1, deal with the semantic
enhancement of the server, which poses a fifth group of requirements. In the
following sections, we investigate the groups organized in requirements specific
to the Semantic Web, common requirements, i.e., requirements that hold for ev-
ery application server, and requirements that call for the semantic enhancement
of the server itself.

Semantic Web Specific Requirements

Requirements Stemming from the Semantic Web's Static Part

The static part of the Semantic Web is introduced in Figure 4.2 on page 58. In
essence, the static part defines a stack of languages with increasing modelling
capabilities. The requirements below follow straightforwardly from this stack.

158 SEMANTIC MANAGEMENT OF MIDDLEWARE

w Language Support A trivial requirement is the support of all the Seman-
tic Web's ontology and metadata standards. An application server for the
Semantic Web has to be aware of RDF, RDFS, OWL, as well as future
languages that will be used to specify the logic, proof and trust layers.

Semantic Interoperation We use the term semantic interoperation in the
sense of translating between different ontology languages with different
semantics. Although the languages of the Semantic Web's static part are
standardized and compatible with each other, there remain many widespread
proprietary efforts, such as F-Logic [Kifer et al., 19951 or KAON [Maedche
et al., 20031, which have to be supported. Hence, an application server for
the Semantic Web should enable translation between different languages
and semantics [Grosof et al., 2003, Bennett et al., 20021.

w Ontology Mapping In contrast to semantic interoperation, ontology mapping
translates between different ontologies of the same language. Mapping may
become necessary as Web communities usually have their own ontology and
could use ontology mapping to facilitate data exchange [Ehrig and Staab,
2004, Noy and Musen, 2000, Handschuh et al., 2003, Euzenat, 20041.

Ontology Modularization Modularization is an established principle in soft-
ware engineering. It has to be considered also for ontology engineering as
the development of large domain ontologies often includes the reuse of sev-
eral existing ontologies. For example, foundational ontologies might be
used as a starting point. Hence, an application server for the Semantic Web
should provide means to meet that requirement [Stuckenschmidt and Klein,
2004, Volz et al., 2002, Borgida and Serafini, 2002, Maedche et al., 20031.

Requirements Stemming from the Semantic Web's Dynamic Part
The dynamic part of the Semantic Web is also introduced in Figure 4.2 on

page 58. Every dynamic aspect yields a corresponding requirement.

w Finding, Accessing, Modifying and Storing of Ontologies Semantic Web
applications such as search engines (e.g., http : //swoogle . umbc . edu/),
editors or portals, have to access, modify and finally store ontological data.
In addition, the development of domain ontologies often requires other on-
tologies as starting points. Examples are the foundational ontologies intro-
duced in Chapter 6, Section 2. Those can be stored and offered by the server
to editors.

Transactions and Rollbacks The dynamic aspects transactions and rollbacks
lead to further requirements. All updates to the Semantic Web data must be
done within transactions assuring the properties of atomicity, consistency,
isolation (concurrency) and durability (ACID) [Ullman, 19881. Although, in

Design of an Ontology-based Application Server 159

general, transactions can be considered as a common requirement, they can
become specific as the Semantic Web languages require special handling.

H Evolution and Versioning Ontologies are applied in dynamic environments
with changing application requirements (cf. [Stojanovic et al., 2002bl). The
underlying ontology must be evolved as well to apply the changes. Ontology
evolution and versioning has its roots in database research. Evolution is the
ability to change a schema of a populated database without loss of data
(i.e., providing access to both old and new data through the new schema).
Schema versioning is the ability to access all the data (both old and new)
through different version interfaces. [Peters and Oezsu, 1997,Banerjee et al.,
1987, Stojanovic et al., 2002a, Noy and Klein, 2002, Volz et al., 2003el

= Monitoring Monitoring can be regarded as the process of checking, observ-
ing or keeping track of application data for a specific period of time or at
specified intervals. An example are web logs of portals which help site ad-
ministrators to identify traffic, possible bandwidth problems, broken links,
etc. However, because the primary focus of this kind of usage recording
is technical, an interpretation of URLs in terms of user behavior, interests,
and intentions, is not always straightforward. In order to obtain meaningful
results, the Web logs must contain the semantics of the pages visited along
user paths. [Oberle et al., 2003al

= Inferencing and VeriJication Inference engines are core components of
ontology-based applications and can be used for several tasks such as seman-
tic validation and reasoning. An application server for the Semantic Web
should provide access to such engines, which can deliver the reasoning ser-
vices required. This requirement is not to be confused with the inferencing
done in the server itself (cf. the requirements for the semantic enhancement
of the server below).

Common Requirements
Common requirements are ones that essentially hold for every application

server. We list them here for the sake of completeness.
Connectivity and Security

H Connectivity An application server should enable loose coupling, allowing
access through standard protocols, as well as close coupling by embedding
it into an application. In other words, a client should be able to use the
system locally and connect to it remotely.

H Ease of Use A developer does not want to expend extra effort in connecting
to and using a software component when an application server is applied.
A software component ought to be accessed seamlessly.

160 Design of an Ontology-based Application Sewer

Offering Functionality via Different Communication Protocols There might
be the need to offer a software component's functionality via another com-
munication protocol. For instance, the application server should be able to
offer its methods via separate Web services, via peer or agent protocols.

Security Guaranteeing information security means protection against unau-
thorized disclosure, transfer, modification or destruction, whether acciden-
tal or intentional. To realize it, any operation should only be accessible by
properly authorized clients. Proper identity must be reliably established by
employing authentication techniques. Confidential data must be encrypted
for network communication and persistent storage.

Flexible Handling of Modules

Extensibility The need for extensibility applies to most software systems.
It is a principle of software engineering to avoid system changes when ad-
ditional functionality is needed in the future. Hence, extensibility is also
desirable for an application server. In addition, our scenario deals with the
multitude of layers and data models in the Semantic Web that lead to a mul-
titude of software modules, e.g., XML parsers or validators that support the
XML Schema datatypes, RDF stores, tools that map RDFS ontologies to
relational databases, ontology stores and OWL reasoners. Therefore, exten-
sibility regarding new data API's and corresponding software components
is an important requirement.

B Integrating Existing Functionality via Different Communication Protocols
A developer might want to integrate different kinds of software entities, e.g.,
Web services, peers or agents, required to build an application. That enables
them to be included in a transaction, for instance, and lifts the responsibility
of handling different protocols from the developer.

Constraints The server should enable the expression of constraints among
different software components, such as the setting up of event listeners
between components. Another example is the management of a dependency,
such as "component A is required for component B."

Requirements for the Semantic Enhancement of the Server
In Chapter 4, Section 2.1 we identify several use cases for the semantic

management of software components in application servers: Library De-
pendencies and Versioning, Licensing, Capability Descriptions, Component
Classijication and Discovery, Semantics of Parameters, Automatic Generation
of Web Service Descriptions, Access Rights, Error Handling, Transactional
Settings, Secure Communication. We combine these requirements into one
group because they all call for the semantic enhancement of the server.

Design of an Ontology-based Application Server 161

The common requirements are met by most of the existing application
servers. Semantic Web specific requirements are relevant only for our sce-
nario. The ones that call for the semantic enhancement of the server itself are
clearly beyond state-of-the-art and of primary interest. In the following sec-
tions, we develop an architecture that is a result of the requirements put forward
in this section. Later, in Chapter 9, we present the details of our implementation,
called KAON SERVER.

2.2 The Microkernel Design Pattern
This section marks the starting point for the design of our ontology-based

application server. The design is expected to meet all the requirements put
forward in the previous section. We start with the consideration of the require-
ment for Extensibility, resulting in the first fundamental design decision: the
use of the Microkernel design pattern. The pattern applies to software sys-
tems that must be able to adapt to changing system requirements. It separates
a minimal functional core, i.e., the Microkernel, from extended functionality
and application-specific parts. The Microkernel also serves as a socket for
plugging in these extensions and coordinating their collaboration [Buschmann
et al., 19961.

The Microkernel can be seen as a framework providing basic operations, i.e.,
the starting, initializing, monitoring, combining,. and the stopping of software
components, as well as the dispatching of messages between them. The Micro-
kernel acts as a basis for our application server. The basic operations mentioned
above are performed on software components. Software components have to
conform to the Microkernel's required interfaces in order to be handled by
the Microkernel. Conformity is accomplished by making existing sofmare de-
ployable, i.e., wrapping existing software in such a way that it implements the
Microkernel's required interfaces. In our scenario, ontology-related software
modules, such as RDF or ontology stores, have to be made deployable. De-
ployment describes the process of registering a component to the Microkernel
with possible initialization and start.

Apart from the cost of making existing software deployable, a drawback of
this approach is that performance will suffer slightly in comparison to stand
alone use, as a request has to pass through the Microkernel first (and possibly
the network). A client that wants to make use of a deployed component's
functionality talks to the Microkernel, which in turn dispatches requests.

However, the Microkernel approach delivers several benefits. By making
existing software deployable, one is able to handle it in a centralized infras-
tructure. As a result, we are able to deploy and undeploy components ad hoc,
reconfigure, monitor and possibly distribute them dynamically. Proxy com-
ponents can be developed for software that cannot be made deployable, e.g.,

162 SEMANTIC MANAGEMENT OF MIDDLEWARE

because it has been developed for a specific operating system. Furthermore,
the Microkernel facilitates the use of interceptors. Interceptors are software
entities that monitor a request and modify it before the request is sent to the
component. They are a powerful means for increasing flexibility.

2.3 Integration of an Inference Engine
In this section we respond to the group of Requirements for the Semantic

Enhancement of the Sewer. All of them implicitly call for the application
of our management ontology, providing the means for semantic descriptions
of software components. Thus, the second fundamental design decision is to
integrate an inference engine that stores and reasons with descriptions of all
deployed components. The Microkernel approach requires the integration of
an inference engine itself as a component.

From the Microkernel's perspective, every component looks alike. We have
to classify the components in order to facilitate development and administra-
tion. Such a classification has to be captured by the domain version of our
management ontology when applying it in the resulting server. Chapter 10 dis-
cusses the application and reuse of the management ontology in more detail.
We can identify the following types of components:

System Component Software component providing functionality for the ap-
plication server itself, e.g., the inference engine.

Functional Component Software component that constitutes application
logic. The ontology-related software modules of our scenario become func-
tional components by making them deployable, e.g., RDF stores.

External Module An external module cannot be deployed directly as it may
be programmed in a different language or live on a different computing
platform. It is equivalent to a functional component from a client perspective
by having a proxy component deployed that relays communication to the
external module.

Proxy Component Proxy components are special types of functional compo-
nents that manage the communication to an external module.

Our design leaves open the different ways of using the inference engine (cf.
Section 1.3). Depending on the specific implementation and depending on the
use case considered, we may realize: (i) the reverse engineering approach by
obtaining semantic descriptions, (ii) model-driven deployment by modelling
semantic descriptions and generating specific deployment descriptors and (iii)
the ontology run time approach, i.e., disposing descriptors in general.

Design of an Ontology-based Application Sewer 163

2.4 Architecture
The first two design decisions, i.e., the Microkernel approach and the inte-

gration of the inference engine as a component itself, constitute the basis for our
architecture. In this section, we complete the design of the server by detailing
its overall architecture.

For the Semantic Web scenario we envision the following interplay of design
elements: When a client connects to the application server, it either needs to
discover the required functional components or to deploy them itself. In the
first case, the client uses the inference engine to find a deployed functional com-
ponent fulfilling its prescriptions. The client retrieves a reference as a response.
From then on, the client can seamlessly work with the functional component
by surrogates that handle the communication over the network. On the server
side, the counterpart to the surrogate is a connector component. It maps re-
quests to the Microkernel's methods. All requests pass the Microkernel, which
dispatches them to the appropriate functional component. While dispatching,
a request can be modified by interceptors that may deal with auditing, for in-
stance. Finally, the response passes the Microkernel again and finds its way to
the client through the connector and the surrogate. The following paragraphs
explain the architecture depicted in Figure 8.4.

Surrogates

Surrogates (not shown in Figure 8.4) are objects embedded in the client appli-
cation that relieve the developer of the communication details similar to stubs
in CORBA (cf. requirement Ease of Use). They offer the same API as a specific
component and relay communication to any connector, which in turn passes the
request to the respective functional component through the Microkernel.

Connectors

Connectors are system components. They send and receive requests and re-
sponses over the network. Aside from the option to connect locally, further
possibilities may exist for remote connection: e.g., ones that offer access via
Java Remote Method Invocation (RMI) or ones that offer asynchronous commu-
nication. Connectors also allow publishing components' methods as separate
Web services. Offering the functionality with peer or agent protocols is also
possible (cf. requirement Offering Functionality via Different Communication
Protocols).

Server Core

The server core comprises the Microkernel (also called kernel), as well as sev-
eral system components. It is required to deal with the discovery, allocation
and loading of components. The inference engine, a system component, man-

164 SEMANTIC MANAGEMENT OF MIDDLE WARE

~ 1 . 4 ~ Proxy Component Interceptor

I Functional Component External Module System Component
\!

Figure 8.4. Architecture of the ontology-based application server.

Design of an Ontology-based Application Sewer 165

ages descriptions of the components and allows the reasoning with them. The
component loader facilitates the deployment process for a client. It takes a
semantic description of a component as argument, handles the deployment, in-
tegrates the description in the inference engine and ontology and applies the
association management if necessary. The latter is another system component
that puts ontological constraints among components into action. For example,
event listeners can be put in charge so that a component A is notified when B
issues an event. Another example might be a component which may only be
undeployed if others do not rely on it.

System components can be deployed and undeployed ad hoc, so extensibility
is also given for the server core. Further components are possible, e.g., a
cascading component that offers seamless access to the components deployed
in another application server.

Interceptors
Interceptors are software entities that monitor a request and modify it before
the request is sent to the component. Interceptors allow the sharing of generic
functionality, such as security, logging, or concurrency control, and require less
work than developing individual component implementations. A component
can be deployed with a stack of arbitrary interceptors. For example, when a
component is restarted, an interceptor can block and queue incoming requests
until the component is available again. Another example are security aspects
which can be met by interceptors that guarantee that operations offered by func-
tional components in the server are only available to appropriately authenticated
and authorized clients.

Functional Components
Functional components are the ones that constitute the application logic.
They are of primary interest to the developer whereas system components
are a means to an end. In our scenario, RDF stores and ontology stores, etc.,
are deployed to the kernel as functional components. Proxy components
(which are conceptually subsumed by functional components) cannot only be
developed for external modules, but also for Web services, peers or agents.
That allows a developer to access them conveniently by surrogates instead of
handling several other protocols. In addition, interceptors can be applied on
top, so that, e.g., a Web service might be part of a transaction along operations
of a deployed ontology store.

Table 8.1 shows where the requirements put forward in Section 2.1 are re-
flected in the architecture. Due to the Microkernel design pattern the architec-
ture basically consists of the Microkernel itself, components, interceptors and
surrogates. Components are classified into system, functional and proxy com-

SEMANTIC MANAGEMENT OF MIDDLEWARE

Table 8.1. Dependencies between requirements (cf. Section 2.1) and design elements.

Components

ponents to facilitate their handling and discovery for the application developer.
Table 8.1 only shows connectors as subconcept of system component, as well
as the inference engine, the component loader and the association management,
which are specific system components. Functional and proxy components are
represented in one column each.

Most of the Semantic Web specific requirements (Language Support to In-
ferencing and VeriJication in Table 8.1) are met by functional components. We
expect that existing software will be made deployable and as such integrated
to meet the requirements. In addition, Semantic Interoperation can also be
realized by interceptors which can translate between Semantic Web ontology
languages. For example, if a client wants to talk in frame logic to an OWL
ontology store, an interceptor could be registered that automatically translates
the request. Ontology Modularization, Transactions and Rollbacks, Evolution
and Versioning, as well as Monitoring, are different in that they all can be im-
plemented within one functional component. A comprehensive ontology store
might offer means for transactions, for instance. Interceptors, on the other hand,

Semantic Management of Web Services 167

can realize those mechanisms on top of several components. Akin to what a
transaction monitor does with several database systems, an interceptor would
be capable of realizing transactions spanning several ontology stores.

The remaining requirements (Connectivity to Requirements for Semantic En-
hancement in Table 8.1) are met as follows: the need for flexible Connectivity
to the server and the Oflering of Functionality via Different Protocols is real-
ized by different connector components that can be deployed and undeployed
ad hoc. Ease of Use particularly affects the surrogate objects, which are ob-
jects embedded in the client application to hide to different communication
protocols. We expect that Security will mainly be realized by interceptors. The
requirement of Extensibility is met by the Microkernel and component approach
as discussed in Section 2.2. Interceptors also foster extensibility because they
can be deployed with a component at run time. Proxy components allow the
Integration of Exiting Functionality and Constraints can be handled by the as-
sociation management system component. Finally, the Requirements for the
Semantic Enhancement of the server are met by the inference engine.

3. Semantic Management of Web Services
We have discussed in Section 1.1 that application servers typically provide

Web service support and, therefore, can also be considered for some of the
Web service use cases. Hence, we have decided to use our ontology-based
application server also as a platform for the semantic management of Web
services. Basically, the realization of semantic management of Web services
boils down to an extension of the server. In this section we discuss what this
extension looks like.

In Chapter 4, Section 2.2, we have identified several use cases for the se-
mantic management of Web services: Analyzing Message Contexts, Selecting
Service Functionality, Policy Handling, Detecting Loops in Interorganizational
WorkJows, Incompatible Input and Outputs, Relating Communication Param-
eters, Monitoring of Changes, Aggregating Service Information and Quality of
Service. The set of realizable use cases is reduced when choosing an applica-
tion server as platform: Detecting Loops in Interorganizational WorkJlows, as
well as Aggregating Service Information, require a Web service composition
engine. Furthermore, our relatively simple scenario, called "Web services in
Smartweb" (cf. Chapter 4, Section 1.2, page 62), does not require the Policy
Handling use case. Regarding the use cases, we can derive the following design
elements that have to be integrated in our ontology-based application server:

Metadata Collector Section 1.3 has already indicated that functionality is re-
quired to obtain the WS* descriptions of used Web services. We call this
functionality metadata collector and integrate it as a system component into
our application server. Given the URL of a WS* description, it retrieves

168 SEMANTIC MANAGEMENT OF MIDDLEWARE

the file, parses it, extracts relevant information and integrates the seman-
tic descriptions. Obtaining the descriptions is already sufficient to realize
Monitoring of Changes and Incompatible Inputs and Outputs and serves as
a basis for all the other use cases.

Web Service Connector The basic requirement for the Analyzing Message
Context use case is a SOAP engine, i.e., a Web service connector. The meta-
data collector can also obtain information from in-and-outcoming SOAP
messages. Browsing and querying the inference engine allows the devel-
oper to analyze the messages.

Service Matchmaker Manually browsing service capability descriptions or
an automatic service matchmaker is required for the use case of Selecting
Service Functionality. Service matchmakers compare a given service re-
quirement description to several service offering descriptions and choose the
best fitting one. Several service matchmaking engines have been prototypi-
cally implemented in the area of "Semantic Web Services" (cf. related work
in Chapter 11, Section 4). For example, [Li and Horrocks, 2003, Paolucci
et al., 2002c,Noiaet al., 20031. Such engines can be integrated as functional
components.

Policy Engine For Policy Handling and Relating Communication Parameters
or the even more sophisticated task of automated policy matching, we need
a corresponding policy engine. It can be integrated as a component as well,
acting on a semantic service description in the inference engine and the
policy of an external service. There are some prototypes available in the
area of "Semantic Web Services" (cf. related work in Chapter 11, Section
4). For example, [Tonti et al., 2003,Kagal et al., 2003,Agarwal and Sprick,
20041.

Monitoring Interceptor Regarding the use case of Quality of Service, an in-
terceptor can be put in place. It allows the monitoring of service requests
and, thus, the gathering of statistics on the reliability and availability of busi-
ness partners' IT infrastructure. Assuming the system is aware of potential
endpoints implementing a required service, these endpoints can be pinged
regularly. If an actual request arrives, aggregated availability information
can be used to direct subsequent requests to one or the other third party
service.

Table 8.2 compares the use cases and the design elements that realize them.
The metadata collector is necessary for the realization of every use case, empha-
sizing that semantic management of Web services requires the Reverse Engi-
neering Approach because of the standardization of WS* descriptions. Model-
Driven Deployment is possible in principle, but not required by the use cases
considered.

Design of an Ontology-based Application Sewer

Table 8.2. Dependencies between use cases and design elements.

Components

4. Summary
In this chapter we have answered the Question 111.1: What is a suitable

target pla@orm? We have opted for an application server, but have come to
the conclusion that other platforms would benefit from semantic technology as
well. The next question we have answered in this chapter is 111.2: Who provides
semantic descriptions? We have seen that there are many potential sources that
allow the (semi) automatic obtaining of semantic descriptions. Therefore, the
number of manually provided descriptions can be kept small. We have then
moved on to design an ontology-based application server that supports the
semantic management of components and services. The resulting architecture
is rather generic but provides a number of components to support application
development in the Semantic Web (as introduced in our scenario in Chapter 4,
Section 1.1). The following chapter presents a possible implementation of this
design.

Chapter 9

IMPLEMENTATION

In the last chapter we have designed the architecture of an ontology-based
application server that enables the semantic management of components and
services. The server provides a number of components to facilitate the de-
velopment of Semantic Web applications. In this chapter, we implement the
architecture, thus answering the Question 111.3: How to implement semantic
management? The recipe for implementation is quite simple: (i) reuse an ex-
isting application server; i.e., map the design elements of the architecture to
concrete implementation elements of the application server and (ii) integrate
the ontology infrastructure (inference engine, ontology store, ontology editor,
etc.) of an existing ontology tool suite.

Regarding (i), we choose the open source application server JBoss, which is
based on the Java Management Extensions (JMX), providing a flexible frame-
work for plugging components in and out at run time. We briefly introduce
JBoss in Section 1. Regarding (ii), we leverage the wealth of tools provided by
the Karlsruhe Ontology and Semantic Web tool suite, KAON [Maedche et al.,
20031. A brief overview of KAON is provided in Section 2. We particularly
focus on its inference engine, ontology store and ontology editor because we
apply them in JBoss. The result of this fruitful combination is called KAON
SERVER which will be discussed in Section 3. We finish in Section 4 by an ex-
ample which demonstrates the usefulness of the KAON SERVER for building
Semantic Web applications. An assessment of the benefits of its semantic en-
hancement, as well as the details regarding the application of the management
ontology, follow in Chapter 10.

Most of this chapter has been published in conference proceedings, journals
and project reports. The KAON SERVER has been outlined and described
in several publications [Oberle et al., 2005d, Oberle et al., 2004a, Oberle
et al., 2OO4d, Oberle et al., 2004c,Volz et al., 2003al. An in-depth discussion

172 SEMANTIC MANAGEMENT OF MIDDLEWARE

of its technical details is given in Wonderweb deliverables [Oberle et al.,
2003d, Oberle et al., 2003e,Volz et al., 2003b,Volz et al., 2003c, Volz et al.,
2003d,Motik et al., 20021. The KAON SERVER prototype can be downloaded
athttp://kaon.semanticweb.org/server.

1. The JBoss Application Server
JBoss is an open source J2EE compliant application server.' Its core, a

JMX implementation called JBossMX, will also act as a basis for our KAON
SERVER. In this section, we briefly discuss JMX, JBossMX and the architecture
of JBoss.

JMX (Java Management Extensions) is a specification from Sun defining
a framework for flexible component-based applications [Lindfors and Fleury,
20021. JMX defines interfaces of specific software components, called managed
beans, or MBeans for short.2 MBeans are hosted by an MBeanSewer, which
allows their manipulation. All operations performed on the MBeans are done
through interfaces on the MBeanServer as depicted in Figure 9.1. We would
like to point out two important methods of the MBeanServer, namely:

registerMBean(Object object, Obj ectName name)

which, as the name suggests, registers an object as MBean to the MBeanServer;
the object has to fulfill a certain contract implementing a prescribed interface,
and

Object invoke(0bjectName name, String operationName,
Object Cl params, String Cl signature)

All method invocations are tunnelled through the MBeanServer to the actual
MBean by this method. The corresponding MBean is specified by name,
whereas operat ionName, params and signature provide the rest of the in-
formation needed. Type checking has to be done by the developer and method
calls are centralized. Hence, the architecture responds flexibly to changing re-
quirements and evolving interfaces. Due to this technique, it becomes easy to
incorporate the mechanism of interceptors.

An MBean must be a public Java object with at least one public constructor.
An MBean must have a statically typed Java interface that explicitly declares
the management attributes and operations. The naming conventions used in
the MBean interface closely follow the rules set by the JavaBeans component
model. To expose the management attributes, one has to declare get and
set methods, similar to JavaBean component properties. The MBeanServer

'http: //www. jboss . o r g
2 ~ o r an introduction to J2EE. components and frameworks, please cf. Chapter 2, Section 3.1.

Implementation 173

Client

Figure 9.1. JMX Architecture. [Lindfors and Fleury, 20021

Java Virtual Machine , ,
: Agent Level i i lnstmmentation Level i

uses introspection on the MBean class to determine which interfaces the class
implements. In order to be recognized as a standard MBean, a class x has
to implement an interface xMBean. Defining the methods getAttr 0 and
setAttr () will automatically make A t t r a management attribute, with read
and write access in this case. Only management attributes can be accessed
and modified by a client. All the other public methods will be exposed as
management operations. Each MBean is accessible by its identifying name,
which follows a special syntax.

Figure 9.2. Basic architecture of JBoss. The "JMX implementation" represents the
MBeanServer of JBossMX. J2EE services, such as "JTSIJTA," "Security," etc., come in the
form of MBeans. [http: / /www . jboss . org]

I .
I . . .
i : . , : : p ' . . @-I \ a . MBeans i t

-
r
g
Iu

g?
-

j
i

- :

i
;

174 SEMANTIC MANAGEMENT OF MIDDLEWARE

JMX is only a specification. It can be implemented differently by vendors.
There are several implementations available with proprietary extensions. Ac-
cordingly, JBoss provides its own implementation of JMX, called JBossMX.

JBossMX is the basis of the JBoss application server whose general architec-
ture is depicted in Figure 9.2. JBoss is developed modularly from the ground
up. The application server is completely implemented using MBeans. Typical
J2EE functionality, such as servlet or EJB containers, are hosted in the form of
MBeans.

The modularity benefits the application developer in several ways. The size
of JBoss, i.e., the amount of required software libraries, can be further trimmed
down to support applications that must have a small footprint. For example, if
support for Enterprise JavaBeans is required, the corresponding MBean can be
deployed at run time. The MBean can be undeployed on demand when it is not
required by an application.

2. The KAON Tool Suite
KAON is an open-source ontology management tool suite targeted at

semantics-driven business applications. KAON consists of a number of dif-
ferent tools providing a broad bandwidth of functionalities centered around
creation, storage, retrieval, maintenance and application of ontologies. [Maed-
che et al., 2003, Bozsak et al., 2002, Gabel et al., 20041 The tool suite can
be obtained from http : //kaon. semanticweb. org. An overview of the tool
suite is depicted in Figure 9.3.

We have chosen KAON because its API offers rather advanced features,
such as transactions, remote access and client-side caching, which are required
for efficient and scalable usage in an application server. For implementing our
ontology-based application server, we only use the API on RDF implementation
of the KAON API as inference engine and ontology store, as well as the OI-
Modeller as management console. However, it is necessary to shortly introduce
the whole toolsuite for a better understanding.

KAON Applications. KAON is distributed with two different applications
for ontology creation and management: KAON Workbench and KAON Portal.
The KAON Workbench provides a graphical environment in turn consisting of
three applications: the 01-Modeller, TextToOnto and the Open Registry (a.k.a.
Ontology Registry). The 01-Modeller is a graphical ontology browser for
creating, editing and maintaining ontologies. A screenshot of the 01-Modeller
is depicted in Figure 9.4. TextToOnto supports the ontology engineering process
by text mining techniques. It provides a collection of independent tools for
both automatic and semi-automatic ontology extraction. The Ontology Registry
provides mechanisms for registering and searching ontologies in a distributed
context. Finally, KAON Portal is a simple tool for multi-lingual, ontology-

Implementation 175

ork

:
I KAON RDF API

t t
I

Figure 9.3. KAON tool suite overview. [Gabel et al., 20041

based Web portals. All of the applications use the KAON API to access and
modify ontologies. Other clients can be built accordingly. The KAON API is
discussed in the next paragraph.

KAON API. The focal point of the KAON tool suite is its ontology API
(KAONAPI), consisting of a set of interfaces for access to ontology entities (OI-
models, concepts, associations and instances). The API is based on the KAON
language which organizes concepts and associations, as well as instances in OI-
models. We further discuss the language idiosyncracies in Chapter 10. The API
supports advanced features, such as client-side caching and remote access, and
incorporates important elements required for the management of 01-models:

Changes of 01-models are always performed within a transaction as a single
unit of work. Therefore, the KAON API uses transactions to isolate updates
of one user from updates of other users.

The KAON API supports modularization of ontologies by means of ontol-
ogy inclusion. Each 01-model may include other 01-models, given that
they reside in API implementations of the same kind (cf. the discussion

176 SEMANTIC MANAGEMENT OF MIDDLEWARE

Figure 9.4. KAON 01-Modeller screenshot. Concepts are represented by rectangles, instances
by rounded boxes, associations (also called properties in the figure) by labelled edges. Subcon-
cept associations are represented by non-labelled edges. Clicking on "Search" allows the user
to enter an arbitrary query.

of different KAON API implementations below). Because the inclusion is
implemented as a link, not as a copy, all changes to the included 01-model
will immediately affect the including 01-model.

a Evolution strategies are responsible for making sure that all changes applied
on the ontology leave the ontology in a consistent state; they are also re-
sponsible for preventing illegal changes. The evolution strategy also allows
the user to customize the evolution process. [Stojanovic, 20041

The KAON API supports concept meta-modelling, which means that it is
possible to treat concepts and associations as instances of meta-concepts.
Thus, a concept and an instance with the same URI may exist simultaneously
in the same 01-model.

Concepts, associations and instances are considered as language-neutral by
the KAON API. However, lexica, referring to different entities in the KAON
representation vocabulary, may be defined. The standard lexical description
are multilingual labels that may be applied to improve the user's interface.

Implementation 177

Another kind of lexical entries are morphologically reduced word stems that
may be used by a natural language processing system.

The KAON API relies on a Datalog engine to implement lightweight rea-
soning and querying. Datalog is a database query language that is a syntactic
subset of Prolog [Abiteboul et al., 19951. The emphasis in the KAON API is
on conceptual querying, which is different from the traditional query language
defined by Datalog, where source and results of queries are always relational.
Hence, the KAON API defines its own query language, called KAON Query,
that considers the idiosyncracies of conceptual querying.

KAON API Implementations. The KAON API provides abstract interfaces
for accessing various types of ontologies independent of the storage mechanism.
API on RDF and API Proxy are two different implementations of the KAON
API as discussed below.

API on RDF The API on RDF implementation represents an in-memory im-
plementation of the KAON API to access RDF-based data sources via the
KAON RDF API. Two reference implementations exist for the KAON RDF
API: On the one hand, KAON offers a simple main-memory implementa-
tion, including RDF parser and serializer. On the other hand, we have the
RDF Sewer which implements the KAON RDF API remotely and allows
for the persistent storage of RDF ontology models in relational databases.

API Proxy The API Proxy is an implementation of the KAON API that acts
as a client-side proxy for various types of the KAON Engineering Sewer.
The Engineering Server provides mechanisms to store KAON ontologies
in relational databases, to distribute change notifications (thus allowing for
multi-user ontology engineering) and to bulk-load ontology elements.

In the subsequent section, we discuss the application of the API on RDF,
as well as the 01-Modeller, in JBoss. The result of this combination is called
KAON SERVER, implementing the design proposed in Chapter 8.

3. KAON SERVER
Our prototype of an ontology-based application server, called KAON

SERVER, implements the architecture that is presented in the previous chapter.
As depicted in Figure 8.4 on page 164, the architecture consists of connec-
tors, the server core, interceptors and functional components. In principle, the
KAON SERVER implements the architecture by using JBoss as a basis and by
applying the tools of KAON for the semantic enhancement of the server. Re-
garding the semantic management of Web services, the prototype only provides
the Web service connector and the metadata collector.

178 SEMANTIC MANAGEMENT OF MIDDLEWARE

An in-depth description follows. We start with discussing the server core
in 3.1 as it is necessary to understand connectors in 3.2, interceptors in 3.3
and functional components in 3.4. We finish with a look at the management
console in 3.5. Figure 9.5 acts as a guide throughout the section, summarizing
the mapping between design and implementation elements.

Design Elements Implementation Elements

Sewer Core: Kernel -
Sewer Core: Inference Engine -
Sewer Core: Association Management -
Sewer Core: Component Loader -
Sewer Core: Metadata Collector -
Connectors -
Interceptors -
Functional Components -
Functional Components -

JBossMX: MBeanSewer

KAON: API on RDF as MBean

KAON SERVER: Association Management MBean

KAON SERVER: Component Loader MBean

KAON SERVER: Metadata Collector MBean

KAON SERVER: HTTP Adapter, etc.

KAON SERVER: lnterceptors

KAON tools as MBeans and external modules

MBeans from JBoss (EJB Container, JTSIJTA, etc.)

Figure 9.5. Mapping from the design elements introduced i n Section 2.4 to the implementation
elements.

The KAON SERVER applies the Ontology Run Time approach (cf. Section
1.3) where components, such as the association management or the component
loader, work directly with the inference engine.

3.1 Server Core
The server core consists of the kernel and the following system components:

the inference engine, the association management, the component loader and
the metadata collector. We outline all of their implementations below.

Kernel
In the case of the KAON SERVER, we use the JBoss implementation of JMX,

called JBossMX, as it provides a Microkernel approach, i.e., a flexible frame-
work for deploying and undeploying components at run time. In our setting,
the MBeanServer implements the kernel and MBeans implement components.
Speaking in terms of JMX, there is no difference between a system component
and a functional component. Both are MBeans that are only distinguished in
their corresponding semantic descriptions.

Implementation 179

Inference Engine

The inference engine is a simple main-memory based ontology store with
reasoning capabilities containing component and service descriptions. This in-
formation source is built around our management ontology, which specifies the
functional aspects of a component, e.g., the libraries required by a component,
its name, the class that implements the component itself and so forth. Chapter
10 discusses the adaptation of the management ontology to this specific use.

We wrap the main-memory implementation of the KAON API (API on RDF)
as a MBean and use it with an applied version of the management ontology.
When a component is deployed, its description (usually stored in an XML file) is
represented as an instance of a concept. A client can use the inference engine's
surrogate to discover the component it needs or to execute arbitrary KAON
queries.

Association Management

The management ontology allows one to express associations between com-
ponents, such as inter-component dependencies. Therefore, the server has to
load all required components and has to be aware of such dependencies when
unloading components. Association management tracks the number of clients
for a component and will only unload the component if no clients are present.

The JMX specification does not define any type of association management
aspect for MBeans. That is the reason why we had to implement this func-
tionality separately as another MBean. Apart from dependencies, it is able to
register and manage event listeners between two MBeans A and B, so that B is
notified whenever A issues an event.

Component Loader

The MBeanServer offers methods to deploy any MBean at run time; however,
the client application of an MBeanServer must explicitly create the MBeans it
needs. It must maintain the list of required libraries, and it must integrate the
semantic descriptions of newly created MBeans into the inference engine and
ontology by itself.

To lift these responsibilities from the individual client, we have developed
a special component loader MBean that facilitates the deployment process.
MBeans are described by KAON XML serializations according to the man-
agement ontology. The component loader uses this description to deploy the
MBean, to integrate the MBean component description in the inference engine
and ontology and to put associations into action by applying the association
management. For example, it deals with the transitive loading of required com-
ponents. The component loader is able to deploy an MBean from arbitrary
URL's; hence, users of the server are not required to install any libraries on the

180 SEMANTIC MANAGEMENT OF MIDDLEWARE

server machine before instantiating a component. The component loader also
ensures that shared libraries that are part of the component implementation are
only loaded once if multiple components share the same library.

Metadata Collector
Besides the Web service connector, the prototypical KAON SERVER im-

plementation provides a metadata collector responding to the required design
elements for semantic management of Web services (cf. Section 3). After pro-
viding the URI's of WSDL, WS-BPEL or WS-Policy documents, the metadata
collector retrieves the documents and adds them as semantic descriptions to the
inference engine. This basically requires a mapping from the documents' tags
to concepts and associations of our management ontology. We have already
given an example for a resulting service profile of WS-BPEL and WS-Policy
documents in Chapter 7, Section 4.3.

In the following, we exemplarily sketch how such a mapping can be achieved
in order to provide the general idea. For a detailed description of the mapping
algorithm please cf. [Oberle et al., 2003dl. Table 9.1 shows the basic mapping
for a selection of WSDL tags and the ontology. Note that the table only sketches
the mapping which basically requires a traversal of the document that must also
consider attributes of the tags.

Table 9.1. A selection of WSDL tags and their mapping to concepts and associations of
management ontology.

our

In a similar way, Table 9.2 sketches how a mapping from WS-BPEL docu-
ments to the management ontology can be achieved. Note that we only consider
the workflow information and neglect variables, assignments and correlation.
Basically, the WS-BPEL process results in an 0oP:Plan with correspond-
ing tasks. The 0oP:Plan becomes part of a C0WS:ServiceProfile. The
0oP:successor association is obtained by considering the nesting of the tags
or by explicit BPEL partnerLinks (Web service invocations).

The mapping from WS-Policy to the management ontology is sketched
in Table 9.3. CS0:PolicyDescriptions of the management ontology model

WSDL Tags
<service>
<operation>
<input>
<output>
<fault>
<complexType>
<simpleType>

Part of Management Ontology
C0WS:ServiceProfile
CS0:Method
CS0:lnput
CSO:Output
CS0:Exception
CS0:dataType
CS0:dataType

Implementation 181

Table 9.2. A selection of WS-BPEL tags and their mapping to concepts and associations of
our management ontology.

WS-BPEL Tags I Part of Management Ontology
<~rocess> I 0oP:Plan

WS-Policy assertions. Every C0WS:ServiceProfile can contain several
CS0:PolicyDescriptions to reflect alternatives (the <ExactlyOne> tag).
Conjunctions of assertions are represented by nested CS0:PolicyDescriptions
(the A l l tag) .

Table 9.3. A selection of WS-Policy tags and their mapping to concepts and associations of
our management ontology.

3.2 Connectors
The KAON SERVER comes with four MBeans that handle communication.

First, there is the HTTP Adapter from Sun, which exposes all of the kernel's
methods to a Web frontend. It acts as a JMX console for the administrator. Sec-
ond and third, we have developed Web service (using the Simple Object Access
Protocol) and RMI (Java Remote Method Invocation) connector MBeans. Both
export the kernel's methods for remote access. Finally, the Local connector em-
beds the KAON SERVER locally into the client application.

For the client there is a surrogate object called RemoteMBeanServer that
implements the MBeanServer interface. It is the counterpart to one of the
four connector MBeans mentioned above. Similar to stubs in CORBA, the
application uses this object to interact with the MBeanServer and is relieved of
all communication details. The developer can choose which of the four options
(HTTP, RMI, Web Service, Local) shall be used by RemoteMBeanServer.

To facilitate all of the above for the client, we have built a Connector-
Factory, the methods of which return surrogate objects for the inference en-
gine, association management, metadata collector and component loader. In
addition, we have developed surrogate objects for functional components. As

WS-Policy Tags
Assertions
<ExactlyOne>
<All>

Part of Management Ontology
One CS0:PolicyDescription per assertion
One of the CS0:PolicyDescription in a C0WS:ServiceProfile
All of the CSO:PolicvDescri~tion in a CS0:PolicvDescri~tion

182 SEMANTIC MANAGEMENT OF MIDDLEWARE

an example, there exists a RemoteRDFServer surrogate, relaying communi-
cation to one of the KAON tools (cf. Section 2). Every surrogate has to be
provided with the MBean's identifier, which can be discovered in the inference
engine.

3.3 Interceptors
As explained in Chapter 8, Section 2.4, interceptors are software entities that

monitor a request and modify it before the request is sent to the component
[Buschmann et al., 19961.

In the kernel, each MBean can be registered with an invoker and a stack of
interceptors. A request received from the client is then delegated to the invoker
first before it is relayed to the MBean. The invoker object is responsible for
managing the interceptors and sending the requests down the chain of intercep-
tors towards the MBean. For example, a logging interceptor can be activated
to implement the auditing of operation requests. An authorization interceptor
can be used to check that the requesting client has sufficient access rights for
the MBean.

Invokers and interceptors are useful to achieve other goals apart from security.
For example, when a component is being restarted, an invoker could block and
queue incoming requests until the component is available again or the received
requests time out. Alternatively, it could redirect the incoming requests to
another MBean which is able to fulfill them. Interceptors may also be used to
meet the requirement of Semantic Interoperation. Client requests in a specific
Semantic Web language can be translated so that they can be understood by a
component that might speak another language.

3.4 Functional Components
KAON Tools There are different implementations that have been made de-
ployable. Among them main-memory based and persistent RDF stores, as well
as main-memory based and persistent KAON ontology stores.

External Modules We have developed several proxy components in order
to adapt external modules: Sesame [Volz et al., 2003d1, Ontobroker [Volz
et al., 2003b1, as well as a proxy component for DL reasoners that conform
to the DIG interface3, such as FaCT [Horrocks, 19981 or Racer [Haarslev and
Moeller, 200 11.

MBeans from JBoss As already mentioned in Section 1, JBoss is based on
a modular design. The application server is completely implemented using

3~escription Logic Implementation Group, h t tp : //dl. kr . org/dig/

Implementation 183

MBeans. Typical J2EE functionality, such as the EJB container or JavaServer
Pages, is hosted in the form of MBeans and can be leveraged in the KAON
SERVER.

3.5 Management Console
We use the KAON 01-Modeller as a simple management console. It allows

the user to browse and edit its contents. The administrator is able to enter
KAON Queries to query the inference engine for any concept in the ontology in
a separate text box. Using the KAON 01-Modeller as a management console is
depicted in Figure 9.6. For starting, stopping and monitoring of components, a
common JMX frontend can be used. In our case, we apply the HTTP Adapter
from Sun (cf. Section 3.2).

+ -- - -~+

Developer or Inference engine
Administrator in application server

KAON OlModeller

Figure 9.6. The KAON OIModeller ontology editor allows the developer and administrator to
browse and query the KAON SERVER'S inference engine.

4. Example
This section shows the usefulness of the KAON SERVER with respect to

its ability to facilitate the development of Semantic Web applications. An
assessment of the benefits of its semantic enhancement follows in Chapter 10.
The example shows the reader how the different parts of the KAON SERVER,
which so far have only been described in isolation from each other, interact
with each other. The first part of the example can be actively followed by
downloading the OilEd demonstrator at http : //kaon . semant icweb . org/
server.

We now refer to the scenario depicted in Figure 4.4 on page 61, which
involved concise modelling of the research and academia domain in description
logics. The ontology thus created can be used in several research and academia
applications. In our scenario, we want to set up a comprehensive portal, which
exploits a rule-based system capable of handling large amounts of instances
and the deduction of additional information by rules.

184 SEMANTIC MANAGEMENT OF MIDDLEWARE

In the following sections, we want to show how the scenario can be realized
with the KAON SERVER using existing clients and several components. The
application version of the domain ontology should be as expressive as possible,
formalized in an executable and standardized language in order to facilitate its
reuse across applications. Hence, the preferred choice is OWL DL (cf. Chapter
4, Section 1.1). The OilEd ontology editor [Bechhofer et al., 20011 may be
used for the construction of such ontologies. OilEd uses the FaCT reasoner
[Horrocks, 19981 for consistency checking of ontologies.

For the portal application, OntoEdit [Sure et al., 20021 and its corresponding
ontology store Ontobroker [Decker et al., 19981 are well-suited because they
are based on frame logics [Kifer et al., 19951 that allow the definition of,
and reasoning with, rules, as well as the efficient handling of large amounts of
instances.

We assume that an instance of the KAON SERVER is up and running, de-
ployed with: (i) RMI and Web service'connectors, (ii) component loader, in-
ference engine and association management system components, (iii) semantic
interoperation and ontology repository functional components and (iv) proxy
components for Ontobroker and FaCT [Horrocks, 19981 (cf. Figure 9.7). The
RDF Server will later be deployed by one of the editors.

OilEd's and OntoEdit's interactions with the server are discussed in the fol-
lowing UML-like sequence diagrams [Booch et al., 19981. Note that these
diagrams do not show the exact Java method calls for the sake of brevity. For
the same reason, we omit all the details involving connectors.

4.1 Modelling the Ontology
For ontology engineering we use OilEd, an editor that supports the OWL

DL language among others. It connects to the KAON SERVER through Java
Remote Method Invocation (RMI). As depicted in Figure 9.8, OilEd uses the
ConnectorFactory to retrieve surrogate objects for the MBeanServer itself,
the component loader and the inference engine in the acquisition phase (I).

In step (2), a successful discovery of the ontology repository functional
component follow^.^ A reference to the repository MBean is returned to OilEd,
which in turn loads the DOLCE top-level ontology from the ontology repository
as the starting point for modelling the domain ontology. The corresponding
method invocation, invoke (MBean-ref , load, DOLCE) , is directly routed
through the MBeanServer without using a surrogate object. This is achieved
by the invoke() method (cf. Section l), which takes an MBean reference,

4~nteractions from surrogate objects (i.e., Remotex, where x is the name of a component) to the KAON
SERVER are not shown in the diagrams. Each surrogate has to be created on the client's side and relay its
method calls over the network to aconnector's invoke 0 method, which eventually calls the MBeanServer's
invoke 0.

Implementation 185

Figure 9.7. An instance of KAON SERVER where OilEd, OntoEdit and the portal application
act as clients.

the name of the operation and its parameters as arguments. After that, the
editor looks up the MBean reference for the semantic interoperation functional
component. OilEd uses it to transform the DOLCE ontology into the OWL
DL language. This method invocation is also routed through the MBeanServer
without any surrogate objects.

At this point, the user is able to start editing the research and academia
ontology (3). When finished, a verification on the ontology is usually done by
applying the FaCT reasoner [Horrocks, 19981. OilEd tries to discover such a
reasoner. In our scenario, we assume that there is a proxy component deployed,
and, thus a reference is returned. The editor creates a RemoteFaCT object,
which hides the communication details. In our case, since the ontology is
consistent, the user proceeds with saving.

SEMANTIC MANAGEMENT OF MIDDLEWARE

Figure 9.8. Sequence diagram - OilEd with KAON SERVER.

For storing the ontology, an instance of KAON's RDF Server along an au-
thentication interceptor is created by using the component loader (4). OilEd
is relieved from starting and initializing. It retrieves a reference to the newly
created MBean from the component loader. Only then it is able to create an
instance of RemoteRDFServer, which, like all other surrogates, hides the com-
munication details and handles possible interceptors. For the latter, Remote-
RDFServer has to be first provided with the credentials. After serializing the
ontology into RDF, it is finally saved by the persistent RDF Server.

4.2 Definition of Rules
In our portal, we want to be able to handle large amounts of instances.

Furthermore, we want to apply complex rules for deducing additional facts,

Implementation 187

e.g., ifa Person A works in Project X and X's topic is Z then Person A is familiar
with the topic Z. OntoEdit and its corresponding ontology store Ontobroker are
well-suited for such purposes because they are based on frame logics. Frame
logics allow the definition of rules and the efficient handling of large amounts
of instances. We assume that the semantic interoperation functional component
allows the translation of the concept hierarchy and the associations from OWL
DL to frame logics. Note that we do neglect the details of translating between
different logics for the sake of a simple scenario. The translation allows using
OntoEdit, which provides a graphical user interface for editing ontologies and
rules.

Figure 9.9 depicts the sequence diagram for OntoEdit's communication with
the server. RemoteMBeanServer and RemoteInf erenceEngine objects are
created in phase (I), similar to OilEd's interactions. We assume that the user
is aware of the RDF Server and the ontology just created. Helshe can provide
enough information to perform a successful discovery for the store, as well as
the required credentials (2). An instance of RemoteRDFServer is responsible
for communication and handling the authentication interceptor on the server's
side. The invocation of getontology (. . .) on RemoteRDFServer yields an
RDF-stream that is to be transformed into frame logic, i.e., OntoEdit's ontology
language, by the semantic interoperation functional component. OntoEdit dis-
covers the latter and calls the respective method directly, without creating any
special surrogate object, through RemoteMBeanServer. The user is now able
to add rules and instances and to perform adaptations on the ontology, as only
the concept hierarchy and associations have been translated from the OWL DL
ontology (3).

OntoEdit uses Ontobroker for ontology storage and reasoning, as well as
semantic validation of the ontology (analogous to OilEd and FaCT). Ontobroker
exploits a relational database system for persistence. We have already assumed
that a proxy component for Ontobroker is deployed to the KAON SERVER.
Instead of loading a new one, OntoEdit tries to discover such a component and
retrieves a reference to the respective MBean (4). Before loading the frame
logic ontology into Ontobroker, the editor ensures that the proxy component is
not unloaded by other clients or unloaded for server performance reasons. It,
therefore, retrieves a reference to the association management via the inference
engine and invokes a corresponding method. Frame logic ontology, instances
and rules can now be loaded into Ontobroker.

4.3 Setting up the Portal
After translation into frame logic, possible adaptations and addition of rules

with OntoEdit, the portal application just needs to reuse the deployed Ontobro-
ker residing within the KAON SERVER. It already holds the required ontology
together with the rules. The application has to connect to the KAON SERVER,

SEMANTIC MANAGEMENT OF MIDDLEWARE

lookup(RDF e er)

edit
rules

, preventunload n Ontobroker) -11 I
new

I I I I I

Figure 9.9. Sequence diagram - OntoEdit with KAON SERVER.

in this scenario by a Web service connector, discover Ontobroker and start dis-
playing and changing the ontology's instances by a Web front-end. Without the
KAON SERVER, all of the above would lead to a one-off effort of combining
software modules without the possibility for much reuse and extensibility.

5. Summary
In this chapter we have responded to the Question 111.3: How to implement

semantic management? We have reused the open source application server
JBoss and have leveraged the wealth of tools provided by the Karlsruhe On-
tology and Semantic Web tool suite, KAON [Maedche et al., 20031. KAON's
inference engine, ontology store and ontology editor have been applied to se-
mantically enhance JBoss. The result of this fruitful combination is called

Implementation 189

KAON SERVER, whose usefulness for building Semantic Web applications has
been demonstrated by an example. The example has shown that without the
KAON SERVER, application development for the Semantic Web leads to a
one-off effort of combining software modules without the possibility for much
reuse and extensibility. An assessment of the benefits of semantic management,
as well as details regarding the application of the management ontology, follow
in Chapter 10.

Chapter 10

APPLYING THE MANAGEMENT ONTOLOGY

In the last chapter we have been concerned with implementing the design of
an ontology-based application server. We have reused the existing application
server JBoss and applied the tools of KAON for the semantic enhancement
of the server. However, we have not detailed the steps necessary to reuse our
management ontology in the resulting KAON SERVER.

In this chapter, we fill the gap by responding to the Question 111.4: How
to reuse the ontology? We have designed the management ontology in such a
way as to be platform-independent and as specific as possible at the same time.
For reuse in the KAON SERVER, one needs to take the following three steps
(cf. Figure 10.1): (i) we have to specialize the core concepts and associations
to reflect the idiosyncracies of the platform. For example, we have to intro-
duce MBeans as a special kind of C0SC:SoftwareComponent. The result
of this step is a domain, reference and heavyweight version of our management
ontology. Step (ii) removes concepts and associations that have been intro-
duced merely for reference purposes. An example are ComputationalObjects
and ComputationalActivities because both were introduced for a better ex-
planation of other terms, such as Software or Data. The result is a domain,
application and heavyweight version. Finally, step (iii) requires the adaptation
of the axiomatization to the KAON language, which is less expressive than the
management ontology's language (i.e., modal logic S5). The resulting ontol-
ogy, viz., a domain, application and lightweight version of the management
ontology, is actually applied in the KAON SERVER and can be obtained from
http://cos.ontoware.org.

Sections 1 to 3 discuss the three steps in detail. Finally, Section 4 assesses
the benefits of semantic management by comparing efforts with and without
semantic technology on a per-use-case basis.

SEMANTIC MANAGEMENT OF MIDDLEWARE

Figure 10.1. Reuse of the management ontology in the KAON SERVER requires (i) special-
ization of the core entities to reflect domain knowledge, (ii) shifting from reference to application
purpose and (iii) reduction from heavyweight to lightweight axiomatization.

1. From Core to Domain
The first step in reusing our management ontology is to specialize and extend

its concepts and associations so that they reflect the idiosyncracies of the KAON
SERVER. That means moving from core to domain on the specificity axis of
our classification (cf. Figure 10.1). The result of this step is a domain, reference
and heavyweight version of our management ontology. That means, we keep
the representation formalism of the management ontology, i.e., modal logic S5,
in this step. The resulting taxonomy is depicted in the Appendix on page 253.

This step requires an analysis of the typical concepts prevailing in the KAON
SERVER. As KAON SERVER is based on J2EE, and, more specifically, on
JMX, we find terms such as "MBean" or "JAR (Java ARchive). Furthermore,
Chapter 7, Section 2.3, page 162, introduced a classification taxonomy of "func-
tional components," "proxy components," and "system components." Such
concepts must be aligned to the concepts of the management ontology. That
means choosing an appropriate superconcept and axiomatizing their meaning
by applying concepts and associations of the management ontology. Hence, the
following sections introduce MBeans as a special kind of C0SC:Software-
Component and additional kinds of profiles to capture the classification tax-
onomy. Component providers can further extend the ontology by introducing
customized profiles to categorize specific components.

Applying the Management Ontology 193

1.1 MBeans
The KAON SERVER is based on JBoss, which in turn relies on JMX (the

Java Management Extensions). JMX is a specification from Sun defining a
framework for flexible component-based applications. JMX defines interfaces
of specific software components, called managed beans or MBeans. The goal
of this section is to formalize MBeans as a specialization of C0SC:Software-
Component. For this reason, we analyze the contents of MBean deployment
descriptors, called MLETs [Lindfors and Fleury, 20021. MLETs define MBeans
by the following attributes:

code This attribute specifies the full Java class name, including the package
name, of the MBean described.

ob j e c t This attribute specifies the . s e r file that contains a serialized repre-
sentation of the MBean described. Either code or object must be present.

archive This mandatory attribute specifies one or more . j a r files containing
MBeans or other resources used by the MBean described.

codebase This optional attribute specifies the codebase URL of the MBean to
be obtained. It identifies the directory that contains the . j a r files specified
by the archive attribute.

name This optional attribute specifies the object name to be assigned to the
MBean instance when it is registered to the MBeanServer.

version This optional attribute specifies the version number of the MBean
and associated . j a r files to be obtained. The version number can be used
to update . j a r files that are loaded by the MBeanServer.

a r g l i s t This optional attribute specifies a list of one or more parameters for
the MBean to be instantiated. This list describes the parameters to be passed
to the MBean's constructor.

The definitions and axioms below capture such an MBean description by
means of our management ontology.' We use the nomenclature above as names
of the corresponding associations although it is mnemonically misleading. Note
that we omit the definitions of associations with simple XML-Schema datatypes,
such as xsd: s t r i n g or xsd: integer , as range. These are code, object,
codebase, name and version.

'Note that the symbol @ represents the logical xor (exclusive or) connective.

194 SEMANTIC MANAGEMENT OF MIDDLEWARE

(D39) MBean(x) =d,, COSC:SoftwareComponent(x) A 3y(code(x, y) @
object(x, y)) A 3a, cb, n, v, al(archive(x, a) A codebase(x, cb) A
name(%, n) A version(x, v) A arglist(x, al))

(A31) MBean(x) -+

COSC:conforms(x, JMX) A COSC:FrameworkSpecification(JMX)

(D40) JARCollection(x) =,,,
DOLCE:Collection(x) A 'dy(DOLCE:member(x, y) 4 JAR(y))

(D41) JAR(x) =,,, COSC:SoftwareLibrary(x) A
Vc((DOLCE:properPart(x, c) A CSO:Class(c)) -+

(OIO:orderedBy(c, Java) A
OIO:lnformationEncodingSystem(Java)))

(D42) Argument(x) =d,f CSO:Data(x) A 3, v(type(x, t) v value(x, v))

(A32) archive(x, y) + MBean(x) A JARCollection(y)
(A33) arglist(x, y) -t MBean(x) A Argument(y)
(A34) nextArgument(x, y) -+ Argument(x) A Argument(y)
(A 3 3 type(x, y) -+ Argument(%) A (y = java.lang.Boolean V y =

java.lang.Byte V y = java.lang.Short V y = java.lang.Long V y =
java.lang. Integer V y = java.lang. Float V y = java.lang. Double V y =
java. 1ang.String)

(D39) and (A31) characterize an MBean as a C0SC:SoftwareComponent
conforming to the JMX framework specification with all the attributes intro-
duced above. While code, object, codebase, name and version are simple
attributes, archive and arglist require more attention. As defined in (A32), the
range of archive points to a JARCollection, viz., a DOLCE:Collection, con-
sisting of JARs (Java ARchives). JARs are C0SC:SoftwareLibraries whose
CS0:Classes are represented in the Java language (cf. (D40 and (D41)). The
range of arglist points to an Argument (cf. (A33)), which is simply defined
as a special kind of CS0:Data with type and value attributes. (A 3 3 defines
type by enumeration. We omit the definition of value because it is a simple
attribute. In order to preserve the ordering of Arguments, each Argument
may point to its successor via nextArgument as defined in (D42) and (A34).

1.2 Profiles
Section 2.3 in Chapter 8 on page 162 introduced a particular classification

of components in our ontology-based application server. MBeans can act as
functional, system or proxy components. This section is concerned with for-
malizing this classification. The definitions and axioms below capture the terms
as special kinds of C0SC:ComponentProfile.

Functional components are MBeans deployed in the ontology-based appli-
cation server that constitute the application logic. In the scenario of application

Applying the Management Ontology 195

development for the Semantic Web, ontology-related software modules, e.g.,
RDF stores, become functional components by making them deployable (that
means wrapping them as MBeans). An arbitrary stack of interceptors can be de-
ployed with each functional component, and the developer can define individual
dependencies between them. Accordingly, we define FunctionalComponent-
Profiles and the associations to interceptors and to other profiles in (D43),
(A36) and (A37) below.

System components are software components providing functionality for the
server itself. In the KAON SERVER, we have a fixed number of system compo-
nents, namely ones for the inference engine, the association management, the
metadata collector, the component loader, as well as several connector compo-
nents. Consequently, we define Systemcomponent Profiles by enumeration
in (D44) below.

Finally, proxy components are special types of functional components that
manage the communication to an external module. External modules cannot
be deployed directly as they may be programmed in a different language, live
on a different computing platform, etc. Thus, ProxyCom ponent Prof iles are
characterized as Functi~nalC~mp~nentProfiles whose C0SC:described
MBeans have a dependence on some kind of software (cf. (D45) below).

As discussed in Chapter 8, Section 2.4, interceptors are software entities that
monitor component requests and modify them. According to this definition,
(D46) introduces the concept of an Interceptor as specialization of a CS0:-
Class that CS0:invokes an MBean. It is possible to define a whole sequence
of interceptors that act on a component. In order to capture the sequence,
(A37), (A38), and (A39) introduce the unique firstlnterceptor association on
the profiles, as well as the transitive nextlnterceptor.

196 SEMANTIC MANAGEMENT OF MIDDLEWARE

2. From Reference to Application
The second step requires moving from reference to application on the pur-

pose axis of our classification (cf. Figure 10.1 on page 192). That means remov-
ing concepts and associations that have been introduced merely for reference
purposes. The result is a domain, application and heavyweight version of the
management ontology. In this section we basically revisit all definitions and
axioms and single out ones that are introduced for reference purposes (cf. Tables
10.1 and 10.2). On the one hand, the main reason for removing a definition is
as follows:

Explanation Concepts and associations might be introduced merely to catch
the intended meanings of other concepts more precisely, i.e., they are
required for a better explanation of other concepts but not for reason-
ing purposes. Examples are CSO:ComputationalObjects and CS0:-
ComputationalActivities. They are introduced to capture the notion of
Data and Software more precisely. CSO:Computationa10bjects are a
special kind of 0IO:lnformationRealization and captures specific con-
tents in main memory. CS0:ComputationalActivities are the D0LCE:-
Perdurants that represent actual CPU operations. Both concepts neither
have subconcepts, nor do we expect to model such information in an appli-
cation ontology.

On the other hand, we can identify different reasons for keeping specific
definitions and axioms. Note that there might be more than one reason for a
definition at the same time. The tables below only list the primary reason in
each case.

Taxonomy We expect that only specializations of core concepts, such as
COSC:SoftwareComponent, will be instantiated in a concrete applica-
tion. For example, the domain version introduced MBean as specific kind
of C0SC:SoftwareComponent. Hence, there will only be instances of
MBean in the application ontology. However, we keep core concepts, such

Applying the Management Ontology 197

as COSC:SoftwareComponent, in the application version of our ontology
in order to have a meaningful taxonomy.

Application Finally, we can find definitions or axioms, which are required
for the application version because they are introduced to enable run time
reasoning. Most definitions but also axioms for transitivity or symmetry
of associations make up this category. As an example, consider (A39)
on page 196, which defines the nextlnterceptor association as transitive.
Furthermore, domain and range restrictions on associations belong in this
category. We opt to keep such axioms also in the application ontology. For
example, Definition (D9) on page 119 specifies the domain and range of
CS0:identifies as CS0:AbstractData and D0LCE:Particular.

The executable target language constrains how much of the axiomatization
can be captured. Consider the definition of Software (cf. (D5) on page 117)
as an example. If we choose KAON as target language, we can only keep
the information that CS0:Software is a specialization of 0IO:lnformation-
Object. If we choose a typical description logic, we are able to capture the
whole expression. We elaborate on this issue in the next section which deals
with step (iii), i.e., moving from heavyweight to lightweight axiomatization.

Table 10.1: Definitions kept or removed from the management ontology.

Description
CS0:ComputationalObject

Keep -
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Reason
Explanation
Explanation
Explanation
Explanation
Taxonomy
Application
Taxonomy
Taxonomy
Application
Application
Application
Application
Explanation
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application

Page -
116
116
116
117
117
117
118
119
119
120
120
120
120
121
123
123
123
123
1 24
124
125
125
125

SEMANTIC MANAGEMENT OF MIDDLEWARE

CS0:PolicyObject
CS0:TaskCollection
CS0:Constraint
CS0:PolicyDescription
C0SC:FrameworkSpecification
C0SC:conforms
C0SC:SoftwareComponent
C0SC:SoftwareLibrary
C0SC:License
C0SC:Profile
C0SC:ComponentProfile
C0SC:Characteristic
C0WS:WebService
C0WS:ServiceProfiIe
C0WS:QualityOfService
MBean
JARCollection
JAR
Argument
FunctionalComponentProfile
SystemComponentProfile
ProxyComponentProfile
Interceptor

Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Application
Application
Application
Application
Explanation
Explanation
Taxonomy
Taxonomy
Taxonomy
Taxonomy
Taxonomy
Taxonomy
Application
Application
Taxonomy
Application
Application
Application
Application
Application
Application
Application
Application

Table 10.1 shows the definitions which are kept or removed from the man-
agement ontology. We have already explained the removal of Computational-
Objects and ComputationalActivities above. D0LCE:presentAt is used
in the definition of DOLCE:specificallyConstantlyDependsOn. The
DOLCE:specificallyConstantlyDependsOn and D0LCE:properPart asso-
ciation are only used for a more precise explanation of other concepts. Finally,
C0SC:FrameworkSpecification and C0SC:conforms are there to specify

Table 10.2: Axioms kept or removed from the management ontology.

Description
CS0:methodRequires
CS0:methodYields
CS0:methodThrows
CS0:dataType
CS0:interfaceRequires
CS0:implements
Transitivity of CS0:invokes
Axiom for CS0:executes
Axiom for CS0:invokes
CS0:inputFor
CS0:outputFor
Axioms for CSO:lnput, CS0:Output

Keep -
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

Reason
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Explanation

Page
120
120
120
120
122
122
123
123
123
124
124
124

Applying the Management Ontology

Axioms for CSO:lnput, CS0:Output
CSO:comp.RightTowards
Axiom for CSO:comp.RightTowards
Axiom for group memberships
C0SC:libraryDependsOn
Transitivity of C0SC:libraryDependsOn
C0SC:libraryConflictsWith
Symmetry of C0SC:libraryConflictsWith
Axiom for C0SC:libraryConflictsWith
C0SC:releasedUnder
C0SC:licenselncompatibleWith
Symmetry of C0SC:licenselncompatibleWith
C0SC:describes
C0SC:profiles
C0SC:directlyAccessibleResource
C0SC:indirectlyAccessibleResource
Axiom for C0WS:WebService
C0WS:invokesWebServiceWithPolicy
Axiom for MBean
archive
arglist
nextArgument
type
profileDepends
firstlnterceptor
nextlnterceptor
Transitivity of nextlnterceptor

No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Explanation
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Application
Explanation
Application
Explanation
Application
Application
Application
Application
Application
Application
Application
Application

Table 10.2 shows the axioms which are kept or removed from the manage-
ment ontology. (A 12) and (A13) are removed because they are only introduced
to capture the difference between CS0:lnputs and CS0:Outputs. In a sim-
ilar vein, (A29) and (A31) help to explain C0WS:WebService and MBean,
respectively. Hence, they are not required for reasoning purposes.

3. From Heavyweight to Lightweight
After removing definitions and axioms for reference purposes in step (ii), the

remaining ones have to be adapted manually to an executable language. That
means moving from heavyweight to lightweight on the expressiveness axis
(cf. Figure 10.1 on page 192) because executable languages are typically less
expressive than the management ontology's language (i.e., modal logic S5).
As discussed in Chapter 9, Section 2, page 174, we have chosen the KAON
toolsuite and, thus, we are bound to the KAON language.

We already mentioned in the previous section, that the choice of the exe-
cutable language constrains how much of the axiomatization can be captured.
In essence, each definition and axiom has to be adapted manually to fit the target
language. We considered the definition of Software. If we choose a typical de-

200 SEMANTIC MANAGEMENT OF MIDDLEWARE

scription logic, such as OWL DL, we are able to capture the whole expression.
If we choose KAON as target language, we can only keep the information that
CS0:Software is a specialization of 0IO:lnformationObject. In general,
KAON only allows expressing concept and association hierarchies, domain,
range and cardinality restrictions on associations, and inverse, symmetry, as
well as transitivity axioms. The resulting ontology, viz., a domain, application
and lightweight version of the management ontology, is actually applied in the
KAON SERVER and can be obtained from http : //cos . ontoware. org.

3.1 The KAON Language
As discussed in Chapter 9, Section 2, page 174, we have chosen the KAON

toolsuite as the semantic technology in the KAON SERVER because the KAON
API offers a comprehensive set of features in order to control the application
server with an ontology. Therefore, we are bound to the KAON language, which
is a proprietary extension of RDFS (cf. Chapter 4, Section I . I). It follows the
object-oriented modelling paradigm as closely as possible and extends it with
simple deductive features by keeping in mind some practical aspects. KAON
is primarily based on deductive database techniques, such as magic sets [Beeri
and Ramakrishnan, 19871, which have proven to be indispensable for achiev-
ing inferencing tractability and practicability. The language allows modelling
concept and association hierarchies, domain, range and cardinality restrictions
on associations and inverse, symmetry, as well as transitivity axiom^.^ The
information is structured in 01-models, containing concepts, association^,^ and
instances at the same time. Unlike most logics, KAON does not introduce a
specific syntax, but an abstract structure of 01-models instead. The following
definitions are taken from [Maedche et al., 20031. For the sake of brevity, we
only present the 01-model structure, the ontology structure and the modular-
ization constraints.

Definition 10.1 (01-model Structure)
An 01-model (ontology-instance-model) structure is a tuple OIM := (E , INC)
where

E is the set of entities of the 01-model,

INC is the set of included 01-models.

An 01-model represents a self-contained unit of structured information that
may be reused. It consists of entities and may include a set of other 01-models

' ~ t the time of writing the book, KAON2 is just being developed. KAON2 is based on a more ex-
pressive description logic and offers much more reasoning capabilities than its predecessor. h t tp :
//kaon:!.sernanticweb.org
3 ~ o t e that associations are called properties in KAON.

Applying the Management Ontology 20 1

(represented through the set INC. Different OI-models can talk about the same
entity, so the sets of entities E of these OI-models do not need to be disjoint.

Definition 10.2 (Ontology Structure)
An ontology structure of an OI-model is a structure O(0IM) := (C , P, R, S ,
T , INV, Hc, H p , domain, range, mincard, maxcard) where

w C E is a set of concepts,

P G E is a set of properties,

rn R C_ P is a set of relational properties (properties from the set A = P \ R
are called attribute properties),

rn S C_ R is a subset of symmetric properties,

w T c R is a subset of transitive properties,

INV C R x R is a symmetric relation that relates inverse relational prop-
erties: i f (pl , pa) E INK then pl is an inverse relational property of p2,

w Hc C C x C is an acyclic relation called concept hierarchy: if (cl , c2) E
Hc then cl is a subconcept of c2 and c2 is a superconcept of cl,

H p C P x P is an acyclic relation called property hierarchy: if (pl , pa) E
Hp then pl is a subproperty of p2 and p2 is a superproperty of pl,

w function domain : P -t 2C gives the set of domain concepts for some
property p E P,

w function range : R -t 2c gives the set of range concepts for some relational
property p E R,

w function mincard : C x P -t No gives the minimum cardinality for each
concept-property pail;

w function maxcard : C x P --t (No U {oo)) gives the maximum cardinality
for each concept-property pail:

Each OI-model has an ontology structure associated with it, consisting of
concepts (to be interpreted as sets of elements) and properties (to be interpreted
as extensional relations between elements). Each property can have domain
concepts. In addition, relational properties can have range concepts. Domain
and range concepts constrain the types of instances to which the properties may
be applied. If these constraints are not satisfied, the ontology is inconsistent.
Relational properties may be marked as transitive and/or symmetric, and it is
possible to say that two relational properties are inverse to each other. For

202 SEMANTIC MANAGEMENT OF MIDDLEWARE

each concept-property pair it is possible to specify the minimum and maximum
cardinalities. Concepts (properties) can be arranged in a hierarchy, as specified
by the Hc (H p) relation, whose reflexive transitive closure follows from the
semantics defined in [Maedche et al., 20031.

Definition 10.3 (Modularization Constraints)
Ifan 01-model OIM imports some other 01-model OIMl (with elements marked
with subscript I) , that is, ifOIMl E INC(OIM), then the following modular-
ization constraints must be satisfied:

El E, C1 C , PI 2 P, R1 c R, Ti c T , INVl INV, Hc, Hc,
H P ~ C- HP,

Vp E Pl domain1 (p) C- domain(p),

H Vp E P I , Vc E Cl mincardl (c, p) = mincard(c, p),

Vp E P I , Vc E C1 macardl (c , p) = maxcard(c, p),

Vc E Cl instconcl (c) E instconc(c),

According to Definition 10.3, reuse is supported by allowing an 01-model
to include other 01-models, thus obtaining the union of the definitions from all
included models. Cyclical inclusions are not allowed; that is, a graph whose
nodes are 01-models and whose arcs point from including to included models
must not contain a cycle. Inclusion is performed by reference. The models
are virtually merged, but the information about the origin of each entity is
represented explicitly.4

3.2 Adaptation of Definitions and Axioms
In this section we formulate all ontology modules by means of one KAON

01-model per ontology module. 01-models include others according to the
dependency graph depicted in Figure 7.1 on page 108. We start with the KAON
SERVER module, which formalizes the domain knowledge discussed in Section
1. The KAON SERVER 01-model includes the Core Ontology of Web Services,
which in turn includes the Core Ontology of Software Components and so forth.

4 ~ l e a s e cf. [Maedche et al., 20031 for the definition of instconc and insfprop.

From Heavyweight to Lightweight 203

We preserve as much of the axiomatization as possible. Because of the lim-
ited expressiveness of the KAON language, we can only capture concept and
association hierarchies, domain, range and cardinality restrictions on associa-
tions, and inverse, symmetry, as well as transitivity axioms.

Defining the 01-models basically requires to revisit all definitions and ax-
ioms. Let us give an example. Consider Axioms (A38) and (A39) on page 196,
which define the nextlnterceptor association. In a first step, we have to insert
nextlnterceptor into ErnoNsERVER because it is one of the entities of the KAON
SERVER ontology discussed in this chapter. In the second step, we have to
include it in P and in R since it is a "relational property," i.e., an association
with a concept as range. Third, nextlnterceptor is defined as being transitive
in (A39). Hence, it becomes an element of T. Fourth, (A38) specified next-
Interceptor as a special kind of CS0:invokes. As a consequence, we add
(nextlnterceptor, CS0:invokes) to Hp. Fifth, nextlnterceptor links two In-
terceptors, and, therefore, its domain and range point to Interceptor. Finally,
(A38) lets us derive that there is at most one nextlnterceptor per Interceptor.
Accordingly, we set mincard and maxcard to 0 and 1, respectively.

KAON SERVER
The 01-model KAONSERVER = (ErnONSERVER, INCMONSERVER) is the One

that will finally be applied in the application server. It includes the concepts and
associations of all other 01-models (including DOLCE and its modules) because
of the transitive inclusions of 01-models. ErnONSERVER and INCKAONSERVER are
defined as follow^:^

ErnoNsERvER = {MBean, JARCollection, JAR, Argument, code, object,
codebase, name, archive, version, arglist, nextArgument, type, value,
FunctionalComponentProfile, SystemComponentProfile,
ProxyComponentProfile, Interceptor, profileDepends, firstlnterceptor,
nextlnterceptor) and INCmoNsERvER = {ECOWS).

O~oNsERVER(KAONSERVER) consists of the following:

rn C = {MBean, JARCollection, JAR, Argument,
FunctionalComponentProfile, SystemComponentProfile,
ProxyComponentProfile, Interceptor)

rn P = {code, object, codebase, name, archive, arglist, nextArgument,
version, type, value, profileDepends, firstlnterceptor,
nextlnterceptor)

5 ~ e assume that for any property there exists an inverse. For the sake of brevity, we omit the definition of
INV in the remainder of this section.

204 SEMANTIC MANAGEMENT OF MIDDLEWARE

rn R = {archive, arglist, nextArgument, profileDepends,
firstlnterceptor, nextlnterceptor)

T = {nextlnterceptor)

= Hc = {(MBean, COSC:SoftwareComponent), (Argument,
CSO:Data), (JARCollection, DOLCE:Collection), (JAR,
COSC:SoftwareLibrary), (FunctionalComponentProfile,
COSC:ComponentProfile), (SystemComponentProfile,
COSC:ComponentProfile), (ProxyComponentProfile,
FunctionalComponentProfile), (Interceptor, CS0:Class))

H p = {(nextlnterceptor, CS0:invokes))

domain(code) = {MBean)
domain(object) = {MBean)
domain(codebase) = {MBean)
domain(name) = {MBean)
domain(archive) = {MBean)
range(archive) = {JARCollection)
domain(arglist) = {MBean)
range(arglist) = {Argument)
domain(nextArgument) = {Argument)
range(nextArgument) = {Argument)
domain(version) = {MBean)
domain(type) = {Argument)
domain(value) = {Argument)
domain(profileDepends) = {FunctionalComponentProfile)
range(profi1eDepends) = {FunctionalComponentProfile)
domain(firstlnterceptor) = {FunctionalComponentProfile)
range(first1nterceptor) = {Interceptor)
domain(nextlnterceptor) = {Interceptor)
range(nextlnterceptor) = {Interceptor)

mincard(MBean, code) = 0
maxcard(MBean, code) = 1
mincard(MBean, object) = 0
maxcard(MBean, object) = 1
mincard(MBean, codebase) = 0
maxcard(MBean, codebase) = 1
mincard(MBean, name) = 0
maxcard(MBean, name) = 1
mincard(MBean, archive) = 0

Applying the Management Ontology

maxcard(MBean, archive) = 1
mincard(MBean, arglist) = 0
maxcard(MBean, arglist) = 1
mincard(Argument, nextArgument) = 0
maxcard(Argument, nextArgument) = 1
mincard(MBean, version) = 0
maxcard(MBean, version) = 1
mincard(Argument, type) = 0
maxcard(Argument, type) = 1
mincard(Argument, value) = 0
maxcard(Argument, value) = 1
mincard(FunctionalComponentProfile, profileDepends) = 0
maxcard(FunctionalComponentProfile, profileDepends) = oo
mincard(FunctionalComponentProfile, firstlnterceptor) = 0
maxcard(FunctionalComponentProfile, firstlnterceptor) = 1
mincard(FunctionalComponentProfile, nextlnterceptor) = 0
maxcard(FunctionalComponentProfile, nextlnterceptor) = 1

Core Ontology of Web Services (COWS)
The 01-model of the Core Ontology of Web Services COWS = (Ecows,

INCcows) includes the 01-model of the Core Ontology of Software Components
(COSC).

Ecmc = {WebService, ServiceProfile, QualityOfService,
invokesWebServiceWithPolicy) and INCcows = {Ecosc).

Ocows(COWS) consists of the following:

w C = {WebService, ServiceProfile, QualityOfService)

= Hc = {(WebService, CSO:Software), (ServiceProfile,
COSC:Profile), (QualityOfService, C0SC:Characteristic))

domain(invokesWebServiceWithPolicy) = {WebService)
range(invokesWebServiceWithPolicy) = {WebService)

206 SEMANTIC MANAGEMENT OF MIDDLEWARE

Core Ontology of Software Components (COSC)
The 01-model of the Core Ontology of Software Components COSC =

(Ecosc, INCcosc) includes the 01-model of the Core Software Ontology (CSO).

Ecosc = {SoftwareComponent, SoftwareLibrary, License,
IibraryDependsOn, IibraryConflictsWith, releasedunder,
licenselncompatibleWith, Profile, ComponentProfile, describes,
profiles, Characteristic, informationTimestamp, informationSource) and
INCmc = {Ecso).

Ocosc(COSC) consists of the following:

w C = {SoftwareComponent, SoftwareLibrary, License, Profile,
ComponentProfile, Characteristic)

P = {IibraryDependsOn, IibraryConflictsWith, releasedunder,
licenselncompatibleWith, describes, profiles,
informationTimestamp, informationSource)

w R = {IibraryDependsOn, IibraryConflictsWith, releasedunder,
licenselncompatibleWith, describes, profiles)

rn S = {IibraryConflictsWith, licenselncompatibleWith)

rn T = {IibraryDependsOn)

Hc = {(SoftwareComponent, CSO:Class), (SoftwareLibrary,
CSO:Data), (Profile, OIO:lnformationObject), (ComponentProfile,
Profile), (Characteristic, DnS:Parameter))

w H p = {(IibraryDependsOn,
DOLCE:specificallyConstantlyDependsOn), (releasedunder,
OIO:expresses), (describes, OIO:about), (profiles, DnS:defines),
(profiles, DnS:unifies), (profiles, OIO:about), (profiles,
0IO:expressedBy))

rn domain(libraryDepends0n) = {SoftwareLibrary)
range(libraryDependsOn) = {SoftwareLibrary)
domain(libraryConflictsWith) = {SoftwareLibrary)
range(libraryConflictsWith) = {SoftwareLibrary)
domain(releasedUnder) = {SoftwareLibrary)
range(re1easedUnder) = {License)

Applying the Management Ontology

dornain(licenselncompatibleWith) = {License)
range(licenselncompatibleWith) = {License)
dornain(describes) = {Profile)
range(describes) = {CSO:Software)
dornain(profiles) = {OIO:lnformationObject)
dornain(profiles) = {DnS:SituationDescription)
range(profi1es) = {CSO:Data)
range(profi1es) = {DnS:ConceptDescription)
range(profi1es) = (D0LCE:Collection)
dornain(informationTimestamp) = (CS0:PolicyDescription)
domain(inf~rmationTimestamp) = (C0SC:SoftwareLibrary)
dornain(informationTimestamp) = (CS0:lnterface)
dornain(informationTimestamp) = (0oP:Plan)
domain(informationTimestamp) = (C0SC:Characteristic)
dornain(informationSource) = {CSO:PolicyDescription)
domain(informationSource) = (C0SC:SoftwareLibrary)
dornain(informationSource) = (CS0:lnterface)
dornain(informationSource) = (0oP:Plan)
dornain(informationSource) = (C0SC:Characteristic)

mincard(SoftwareLibrary, IibraryDependsOn) = 0
rnaxcard(SoftwareLibrary, IibraryDependsOn) = oo
rnincard(SoftwareLibrary, IibraryConflictsWith) = 0
rnaxcard(SoftwareLibrary, IibraryConflictsWith) = oo
rnincard(SoftwareLibrary, releasedunder) = 0
rnaxcard(SoftwareLibrary, releasedunder) = oo
rnincard(License, licenselncompatibleWith) = 0
rnaxcard(License, licenselncompatibleWith) = co
mincard(Profile, describes) = 1
rnaxcard(Profile, describes) = oo
mincard(CSO:PolicyDescription, informationTimestamp) = 0
rnaxcard(CSO:PolicyDescription, informationTimestamp) = 1
rnincard(COSC:SoftwareLibrary, informationTimestamp) = 0
rnaxcard(COSC:SoftwareLibrary, informationTimestamp) = 1
rnincard(CSO:lnterface, informationTimestamp) = 0
rnaxcard(CSO:lnterface, informationTimestamp) = 1
mincard(OoP:Plan, informationTimestamp) = 0
rnaxcard(OoP:Plan, informationTimestamp) = 1
mincard(COSC:Characteristic, informationsource) = 0
rnaxcard(COSC:Characteristic, informationsource) = 1
rnincard(CSO:PolicyDescription, informationsource) = 0

208 SEMANTIC MANAGEMENT OF MIDDLEWARE

Core Software Ontology (CSO)
The 01-model of the Core Software Ontology CSO = (Ecso, INCcso) in-

cludes the 01-model of the Ontology of Information Objects (010), as well as
the 01-model of the Ontology of Plans (OoP).

Ecso = {Software, ComputationalTask, Data, AbstractData, identifies,
Class, Method, Exception, dataType, methodRequires, methodYields,
methodThrows, Interface, interfaceRequires, implements, executes,
accesses, invokes, contextuser, Input, Output, inputfor, outputfor,
User, UserGroup, Policysubject, PolicyObject, TaskCollection,
computationalRightTowards, PolicyDescription, Constraint) and
INCcosc = {Eo,o, E o O P) .

Ocso(CSO) consists of the following:

C = {Software, ComputationalTask, Data, AbstractData, Class,
Method, Exception, Interface, Input, Output, User, UserGroup,
Policysubject, PolicyObject, TaskCollection, PolicyDescription,
Constraint)

= P = {identifies, dataType, methodRequires, methodyields,
methodThrows, interfaceRequires, implements, executes,
accesses, invokes, contextuser, inputfor, outputfor,
computationalRightTowards)

w T = {invokes)

w Hc = {(Software, Data), (ComputationalTask, OoP:Task), (Data,
OIO:lnformationObject), (AbstractData, Data), (Class, Software),
(Method, Software), (Exception, Class), (Interface, Data), (Input,
DnS:Role), (Output, DnS:Role), (User, AbstractData), (UserGroup,

Applying the Management Ontology 209

DOLCE:Collection), (PolicySubject, DnS:AgentiveRole),
(Policyobject, DnS:NonAgentiveRole), (TaskCollection,
DOLCE:Collection), (PolicyDescription, DnS:SituationDescription),
(Constraint, DnS:Parameter))

H p = {(identifies, 0IO:about)) (interfaceRequires,
DOLCE:properPart), (methodThrows, methodyields),
(interfaceRequires, DOLCE:properPart),
(computationalRightTowards, DnS:rightTowards), (contextuser,
DnS:attitudeTowards), (inputFor, DnS:modalTarget), (outputFor,
DnS:modalTarget),

domain(identifies) = {AbstractData)
range(identifies) = {DOLCE:Particular)
domain(dataType) = {Data)
range(dataType) = {DOLCE:Region)
range(dataType) = {Data)
domain(methodRequires) = {Method)
range(methodRequires) = {Data)
domain(methodYields) = {Method)
range(methodYields) = {Data)
domain(methodThrows) = {Method)
range(methodThrows) = {Exception)
domain(interfaceRequires) = {Interface)
range(interfaceRequires) = {Method)
domain(implements) = {Class)
range(imp1ements) = {Interface)
domain(executes) = {Software)
range(executes) = {ComputationalTask)
domain(accesses) = {ComputationalTask)
range(accesses) = {Data)
domain(invokes) = {Software)
range(invokes) = {Data)
domain(contextUser) = {User)
range(contextUser) = {ComputationalTask)
domain(inputFor) = {Input)
range(inputFor) = {ComputationalTask)
domain(outputFor) = {Output)
range(outputFor) = {ComputationalTask)
domain(computationalRightTowards) = {PolicySubject)
range(computationalRightTowards) = {ComputationalTask)
range(computationalRightTowards) = {TaskCollection)

210 SEMANTIC MANAGEMENT OF MIDDLEWARE

= mincard(Data, identifies) = 0
maxcard(Data, identifies) = 1
mincard(Data, dataType) = 0
maxcard(Data, dataType) = 1
mincard(Method, methodRequires) = 0
maxcard(Method, methodRequires) = oo
mincard(Method, methodyields) = 0
maxcard(Method, methodyields) = 1
mincard(Method, methodThrows) = 0
maxcard(Method, methodThrows) = oo
mincard(lnterface, interfaceRequires) = 1
maxcard(lnterface, interfaceRequires) = oo
mincard(Class, implements) = 0
maxcard(Class, implements) = oo
mincard(Software, executes) = 0
maxcard(Software, executes) = oo
mincard(ComputationaITask, accesses) = 0
maxcard(ComputationaITask, accesses) = oo
mincard(Software, invokes) = 0
maxcard(Software, invokes) = oo
mincard(lnput, inputfor) = 0
maxcard(lnput, inputfor) = oo
mincard(O~tp~t, outputfor) = 0
maxcard(O~tp~t, outputfor) = oo
mincard(User, contextuser) = 0
maxcard(User, contextuser) = 1
mincard(User, computationalRightTowards) = 0
maxcard(User, computationalRightTowards) = oo
mincard(UserGroup, computationalRightTowards) = 0
maxcard(UserGroup, computationalRightTowards) = oo

Modelling Basis (DOLCE, DnS, OoP, 0 1 0)

Finally, each ontology module of our modelling basis (DOLCE, Descriptions
& Situations, the Ontology of Plans and the Ontology of Information Objects)
becomes a separate OI-model. However, Descriptions & Situations and the
Ontology of Information Objects mutually depend on each other (cf. Figure 7.1
on page 108). Hence, we have to put both in one OI-model.

For the sake of brevity, we do not present the respective ontology structures
here. All the modules are available in a description logic (OWL DL). The en-
tirety of this application version is called DOLCE Li te Plus (DLP). Their axiom-
atization underwent a similar process such as our contributed modules, i.e., the
axiomatization was adapted to application purposes. For example, temporally

Applying the Management Ontology 21 1

indexed (and, thus, ternary) associations were decomposed by newly introduced
temporal associations. For this work, we have obtained the KAON 01-models
from the description logic files by means of RDFS exports and imports, respec-
tively. Creating the KAON version then boils down to manually maintaining
symmetry, transitivity, inverses, and cardinality restrictions. The KAON ver-
sion of the modelling basis is also available at h t t p : / /cos . ontoware. org.

4. Assessment
This section responds to the Cardinal Question: Can ontologies be used to

facilitate the development and management of middleware-based applications
for developers and administrators?). Demonstrating that we have achieved our
goal of facilitating the management of middleware proves to be problematic for
two reasons.

First, the complexity of application servers makes it very difficult to single
out, measure, and evaluate improvements of any kind. As explained in Chapter
2, Section 3.1, page 18, an application server consists of many interwoven parts.
Often an application server subsumes several other types of middleware in one
product.

Second, it is usually difficult to substantiate the advantages of ontology-based
applications in numbers. The best way to demonstrate their benefits is to have
a modularized application and to perform a controlled experiment. Modules
providing the same functionality with and without the usage of ontologies have
to be applied and the application evaluated each time. Such experiments are
difficult to set up and in many cases the nature of the application makes it im-
possible. This is the case with semantic management because its usage is spread
throughout the target platform. Furthermore, the developer and administrator
have to familiarize with ontologies and semantic technology in general, much
like they have or had to familiarize with deployment and WS* descriptors. In
both cases, it would be necessary to compare the effort of familiarization with
the savings of management efforts and to each other. In addition, we have
to take into account efforts for maintaining the ontology (because ontologies
typically evolve over time).

Because it is very difficult to find measures for a sensible comparison, we
take a qualitative approach for assessing the benefits of semantic management.
We basically revisit the use cases introduced in Chapter 4, Section 2, starting
on page 65, and compare management and modelling efforts with and without
semantic management.

While the modelling efforts are independent of the underlying semantic tech-
nology, we encounter a trade-off between management efforts and reasoning
capabilities. Our use cases require a whole bandwidth of reasoning capabilities:
one requires subsumption reasoning; another uses the reified satisfaction of De-
scriptions & Situations; others require browsing and querying; and so forth. As

SEMANTIC MANAGEMENT OF MIDDLEWARE

a consequence, some use cases cannot be realized with KAON or require man-
agement efforts that could have been saved with more powerful reasoning. This
is due to KAON's limited reasoning capabilities. In essence, there is not much
more than subsumption, transitivity and symmetry. A description logic reasoner
is far more powerful and might save management efforts accordingly. We will
consider this issue when inspecting the use cases in the following sections.

4.1 Application Server Use Cases
We start our assessment with an effort comparison for the similar Library

Dependencies and Versioning and Licensing use cases in Table 10.3. Without
our approach, no modelling efforts have to be expended, but the developer has to
check for conflicting libraries each time the classpath is changed. Expert knowl-
edge is required to avoid run time failures, e.g., when a l i b 1 . jar conflicts with
a l i b 2 . jar. In a system that supports semantic management, we have to model
C0SC:libraryConflictsWith and C0SC:licenselncompatibleWith between
C0SC:SoftwareLibraries and COSC:Licenses, respectively. A check then
boils down to a simple query with KAON, as well as with a DL reasoner. KAON
Query suffices because this use case only requires transitivity and symmetry
reasoning.

Table 10.3. Effort comparison for the Library Dependencies and Versioning and Licensing use
cases.

Effort I Without semantic management I Using semantic management
Management I For n libraries in the classpath: I n simple queries for

The Capability Descriptions use case deals with the fact that components
often adhere to standard interfaces, but differ in their capabilities. In this case,
the developer has to react to all possible cases in the code anytime the interface is
accessed. Semantic management allows obtaining such information manually
or automatically from the C0SC:ComponentProfile by browsing or querying,
respectively. We compare the efforts in Table 10.4. KAON's limited reasoning
capabilities might require more or less management efforts depending on the
complexity of the query. That means, the result might have to be (partially)
obtained by coding in comparison to a much more powerful DL reasoner.

Component Classijkation and Discovery and Semantics of Parameters ad-
dress the problem of searching or comparing functionality over a large number
of component API's at development time. Such tasks are very tedious without

Modelling
(t) manual comparisons

None
C0SC:IibraryConflictsWith

Model C0SC:libraryConflictsWith or
C0SC:licenselncompatibleWith

libraries or licenses

Applying the Management Ontology 213

Table 10.4. Effort comparison for the Capability Descriptions use case.

Effort I Without semantic management I Using semantic management
Management I Code extensive distinction of I Browse or query C0SC:Component-

our approach because they require source code analyses and coding of possi-
ble cases when the semantics of parameters are not specified. As shown in
Table 10.5, semantic management requires modelling the components' CS0:-
Interfaces, but allows convenient browsing and querying possibilities at de-
velopment time. Like with the previous use case, the management effort with
KAON might be higher depending on the complexity of the query.

Modelling

Table 10.5. Effort comparison for the Component ClassiJication and Discovery and Semantics
of Parameters use cases.

Effort

extensive coding of possible cases CS0:lnterfaces in the
and exception handling C0SC:ComponentProfiles

Modelling Model CS0:lnterfaces

cases and exception handling
to avoid run time failures

None

The benefits of the next use case, viz., Automatic Generation of Web Service
Descriptions, are a desirable side effect of semantic management. Given the
savings of management efforts of all the other use cases, this use case proposes
to generate specific WS* descriptions from the ontology a u t ~ m a t i c a l l ~ . ~ WS-
BPEL documents could be generated from a corresponding OoP:Plan, for
instance. No additional modelling efforts have to be expended if the 0oP:Plan
already exists (cf. Table 10.6).

For the Access Rights use case, we return to our motivating example on page
23, which discusses the indirect permission of the WebShopServlet to the
Customer table via a context switch. We have already seen that discovering
such situations is a very costly task. Using semantic management, we can con-
veniently evaluate or query for C0SC:indirectlyAccessibleResource with
no additional modelling efforts when we use a DL reasoner. While KAON is

Profile to obtain the component's
C0SC:Characteristics

Model C0SC:Cornponent-
Profile once

6 ~ h i s is a use case for model-driven deploymenr as proposed in Chapter 8, Section 1.3.

214 SEMANTIC MANAGEMENT OF MIDDLEWARE

Table 10.6. Effort comparison for the Automatic Generation of Web Service Descriptions use
cases.

able to reason with the transitivity of CSO:invokes, it cannot handle its de-
composition into CS0:executes and CS0:accesses. Additional coding is
necessary to obtain the result. Table 10.7 depicts the management effort in the
DL case.

Effort
Management
Modelling

Table 10.7. Effort comparison for the Access Rights use case with a DL reasoner.

Without semantic management
Compare other use cases

Modelling the Web service
descriptions, e.g., WS-BPEL

Using semantic management
Compare other use cases

No additional efforts required if
information exists in the ontology,

e.g., 0oP:Plan

Effort

Table 10.8 compares the efforts for the Exception Handling use case. We
can see that semantic management avoids the tedious manual surveying of
exceptions in the source code by justifiable modelling efforts. The savings
in management effort depend on the reasoning capability. Complex queries
require additional efforts when using KAON.

Without semantic management I Using semantic management

Modelling

Table 10.8. Effort comparison for the Exception Handling use case.

Management I For i scrvlets, j EJBs, k tables: compare I i evaluations of
i web. xml files and code, j e j b- jar. xml

files and k table metadata
Creating and maintaining

i web. xml, j e jb- j ar . xml
descriptors and k metadata tables

Finally, the similar Transactional Settings and Secure Communication use
cases require a manual check of the transactional or security settings of a chain
of calls across components without our approach. Modelling of workflow in-
formation, as well as the transactional and security settings, are necessary to

C0SC:indirectlyAccessible-
Resource

Same as without semantics
because semantic descriptions

are automatically obtained

Effort
Management

Modelling

Without semantic management
Survey calling stack and

component dependencies and
check if exceptions are caught

None

Using semantic management
Browsing or simple querying of the

API descriptions (i.e., CS0:Methods
and CS0:Exceptions)

Modelling API descriptions

Applying the Management Ontology 215

check the validity by a simple query. We encounter the same dilemma between
management efforts and reasoning capabilities as with the Access Rights use
case.

Table 10.9. Effort comparison for the Transactional Settings and Secure Communication use
cases vsing a DL reasoner.

I settings for participating components I
Modelling I None I Modelling of workflow information

Effort
Management

via 0 o ~ : ~ l a n and settings
via C0SC:ComponentProfiles

4.2 Web Services Use Cases
The first Web services use case considered in Chapter 4, Section 2, page 70,

was Analyzing Message Contexts, which is very similar to the application server
use cases Access Rights, Transactional Settings, and Secure Communication.
Hence, we refer the reader to Tables 10.7 and 10.9 for the comparison.

The use case of Selecting Sewice Functionality is similar to one of the appli-
cation server use cases, viz., Component ClassiJication and Discovery, whose
efforts are compared in Table 10.5.

For the similar Policy Handling and Relating Communication Parameters use
cases, we demonstrate the benefits by our motivating example in Chapter 2, Sec-
tion 3.2, page 30, which discusses the integration of WS-BPEL and WS-Policy
descriptors. We have learned that discovering external service invocations with
attached policy remains a pure manual task. Using semantic management, we
can simply query with no additional modelling efforts (cf. Table 10.10). The
dilemma between management efforts and reasoning capabilities is similar to
the Access Rights use case in the previous section.

Table 10.1 1 compares management and modelling efforts for the Detecting
Loops in Interorganizational WorkJows use case. The use case proposes the
parsing and integration of WS-BPEL descriptors to enable a check for cycles
in the invocation chain across WS-BPEL documents, for instance. Without
our approach, this check has to be done by hand, what can be rather expensive
considering large numbers of processes. Semantic management only requires
a simple query with no additional modelling efforts. We encounter the same
dilemma between management efforts and reasoning capabilities as with the
Access Rights application server use case.

Without semantic management
For a chain of calls:

compare transactional or security

Using semantic management
One query involving 0oP:Plan

and C0SC:ComponentProfiles

216 SEMANTIC MANAGEMENT OF MIDDLEWARE

Table 10.10. Effort comparison for the Policy Handling and Relating Communication Param-
eters use cases using a DL reasoner.

Effort

Table 10.11. Effort comparison for the Detecting Loops in Interorganizational WorkJows use
case with a DL reasoner.

Without semantic management I Using semantic management

Modelling

Management I For each process in a WS-BPEL document: I One query to rctricvc

Regarding the use case of Incompatible Inputs and Outputs, we refer the
reader to the Semantics of Parameters use case in Table 10.5 in the previous
section. Both use cases are similar with comparable modelling and management
efforts.

Monitoring of Changes addresses the problem of changing interfaces in a
loosely coupled environment. Changes of used services have to be detected and
depending services have to be identified and adapted. Without our approach this
remains a manual effort. In contrast, semantic management supports the devel-
oper in detecting such changes and identifying the depending service (cf. Table
10.12). KAON is capable of handling such queries. Hence, the management
efforts are the same compared to a DL reasoner.

The Aggregating Service Information use case discusses the automatic calcu-
lation of first-cut quality of service parameters for composite services. In order
to obtain such numbers automatically, service parameters have to be modelled
for each of the composed services. The alternative is to obtain such informa-
tion manually, which is particularly tedious if the composite service contains a
large number of composed services. Table 10.13 compares the efforts in both
cases. The limited reasoning capabilities of KAON might require more or less
management efforts depending on the complexity of the query.

Check for external Web service invocation
and existence of WS-Policy document

creating and maintaining the
WS-BPEL and WS-Policy documents

Effort
Management

Modelling

ext. web-service invocations
with attached policies

Same as without semantics
because semantic descriptions

are automatically obtained

Without semantic management
Check whether external service
invocations lead to loops in one
or more WS-BPEL documents
Creating and maintaining the

WS-BPEL documents

Using semantic management
One query on an 0oP:Plan
to retrieve cyclic invocations

Same as without semantics
because semantic descriptions

are automatically obtained

Applying the Management Ontology

Table 10.12. Effort comparison for the Monitoring of Changes use case.

Effort I Without semantic management (Using semantic management
Management I Manual monitoring of changes, I One query for detecting the change, I detecting and adapting each I one query to detect depending

depending comaonent or service comaonents or service. adavtation
Modelling None None

because semantic descriptions
are automatically obtained

Table 10.13. Effort comparison for the Aggregating Service Information use case.

Effort I Without semantic management I Using semantic managcmcnt
Management (For each composite service: I For cach compositc scrvice:

Finally, the Quality of Sewice use case suggests the gathering of one's own
data about the reliability or availability of used services in the ontology. The
semantic descriptions can be exploited to route service requests to the most
reliable service endpoint, for instance. When applying semantic management,
the most reliable service can be obtained by a simple query. Otherwise, the
application logic has to be hard-coded, leading to an inflexible system with
higher maintenance, and, thus management efforts. Table 10.14 compares the
efforts in both cases. Like with the previous use case, the management effort
with KAON might be higher depending on the complexity of the query.

Modelling

Table 10.14. Effort comparison for the Quality of Service use case.

Effort I Without semantic management I Using semantic management
Management I Code and maintain the best I One query to select the

Obtain first-cut data manually
None

One query to obtain first-cut data
QualityOfService parameters

for composed services

I I for each service

fitting service manually

5. Summary
In this chapter we have answered the Question 111.4: How to reuse the ontol-

ogy? by taking the following steps: (i) we have specialized the core concepts
and associations of the management ontology to reflect the idiosyncracies of

best fitting service
Modelling I None I QualityOfService parameters

218 SEMANTIC MANAGEMENT OF MIDDLEWARE

the KAON SERVER. (ii) We have removed concepts and associations that
were introduced merely for reference purposes and (iii) we have adapted the
axiomatization to the KAON language. The resulting domain, application
and lightweight version of the management ontology is actually applied in the
KAON SERVER and can be obtained from h t t p : //cos . ontoware. org.

Finally, we have assessed the benefits of semantic management thus answer-
ing the Cardinal Question from the Introduction: Can ontologies be used to
facilitate the development and management of middleware-based applications
for developers and administrators? We have taken a qualitative approach for
assessment by revisiting the use cases introduced in Chapter 4, Section 2 and
comparing management and modelling efforts with and without semantic man-
agement. The assessment demonstrated that the rather modest modelling efforts
are clearly outplayed by the savings in management efforts.

PART IV

FINALE

Chapter 1 1

RELATED WORK

This chapter provides an overview of related work by classifying relevant lit-
erature according to research communities and areas, rather than by classifying
according to the organization of the book.

Generally speaking, this work applies the methodologies and tools of the
Semantic Web research community to solve some of the problems of the Mid-
dleware community. Both communities put forth some technologies and ap-
proaches relevant for our work. First, we find the established technology of En-
terprise Application Management (Section 1) . Enterprise application manage-
ment comprises the processes that are used to monitor and control the software
elements that make up application systems. It is a very broad field that starts at
network management and ends at automatic software distribution to the desk-
top. Second, the paradigm of Model-Driven Architectures (MDA) has gained
wide-spread influence in software engineering (Section 2). The principal idea
of MDA is to separate conceptual concerns from implementation-specific con-
cerns. MDA achieves this separation by factorizing the two concerns, specifying
them separately via models and compiling them into an executable. Method-
ologies and tools of UML are used to capture the models. Third, we relate some
approaches that show the bias towards integrating WS* descriptions in Section
3, although we already introduced the reader to Web services in Chapter 2,
Section 3.2. Fourth, Semantic Web Services are a field of research opting for
a wide-reaching formalization that allows full automation of the Web service
management tasks, such as discovery and composition (Section 4). Finally, we
relate miscellaneous efforts and technologies that cannot be classified in the
aforementioned categories (Section 5).

222 SEMANTIC MANAGEMENT OF MIDDLEWARE

1. Enterprise Application Management
Application management can be considered as the task of monitoring and

controlling the software elements that make up application systems. It includes
people, policies, procedures and tools to manage the millions of software el-
ements and configurations that exist in a corporate computing network. This
can include practices that take place when new desktop systems are purchased,
such as reformatting of the hard drive or installing standard configurations. It
may also include the use of automated tools that analyze and update the con-
figuration of systems. It may consist of traditional practices, such as manual
inventories of software installed on desktop systems, software distribution, so-
phisticated performance measurement, and control systems using policy-based
service-level agreements. [Sturm and Bumpus, 1998, Cho and Ejiri, 20041

Enterprise application management is related to our work in two ways. First,
corresponding management systems share some of our use cases simply because
the management of middleware-based applications is a part of application man-
agement. Hence, it is a worthy challenge to semantically enhance also such
management systems (as already discussed in Chapter 8, Section 1.1). We
discuss such systems in Section 1 .l . Second, the schemas of enterprise appli-
cation management, such as MIB or CIM are (semi-formal) conceptual models
that can be a source for semantic descriptions (cf. Chapter 8, Section 1.2). We
discuss the management schemas in Section 1.2.

1 . Application Management Systems
Enterprise application management can be seen as the task of monitoring

and controlling applications in an enterprise so that they can be made resilient
to failures, configurable to changing needs of the business, accountable for
billing and auditing, capable of performing under varying workloads and se-
cure to intended or unintended attacks. There have been several attempts at
standardizing such tasks in the context of conventional middleware. For ex-
ample, CORBA (cf. Chapter 2, Section 3) specifies lifecycle interfaces for
configuration management, and the Java Management Extensions specify a
framework for defining management interfaces on Java objects [Lindfors and
Fleury, 20021. One of the first efforts, however, stems from the International
Standards Organisation (ISO), which introduced the Simple Network Manage-
ment Protocol (SNMP) defining a set of objects called application Management
Information Bases (MIB's) [Kalbfleisch et al., 19991. Furthermore, Applica-
tion Response Measurement (ARM) is a standard for managing performance
events from applications.'

'http: //www . opengroup. org/management/arm. htm

Related Work 223

All the management standards that have been described aim at defining in-
terfaces between the management system and managed applications. Some of
these interfaces are useful in sending data from the application to the manage-
ment system (e.g., SNMP, CIM, ARM). These are called data integaces or
instrumentation integaces. Others are used by the management system to exe-
cute control actions on the application (e.g., JMX, CORBA lifecycle interfaces,
SNMP, CIM). These are called control integaces.

The infrastructure that manages applications using these interfaces is called
an enterprise application management system. Examples of commonly used
application management systems are HP ~ ~ e n ~ i e w , ~ Computer Associates
~ n i c e n t e r , ~ and IBM ~ i v o l i . ~

Enterprise application management systems share some of our use cases
because the management of middleware-based applications can be considered
a part of application management. As already discussed in Chapter 8, Section
1.1, such systems can thus be regarded as a possible platform for semantic
management.

Web Services Management
Application management is currently extended to Web services. The Orga-

nization for the Advancement of Structured Information Standards (OASIS) is
standardizing a Web Services Distributed Management (WSDM) spe~ification.~
Its first part, MUWS (Management Using Web Services), defines how an infor-
mation technology resource connected to a network can provide manageability
interfaces so that the IT resource can be managed locally and remotely using
Web services technologies. It is the foundation of enabling management appli-
cations to be built using Web services and allows resources to be managed by
many applications with one set of instrumentation.

Its second part, MOWS (Management of Web Services), is closely related to
our work. It defines the manageability model for managing Web services as
a resource and specifies how to describe and access that manageability using
MUWS. MOWS can be seen as an extension of enterprise application man-
agement and has two sides: management of applications within an enterprise
and management of relationships with other Web services across enterprises.
The challenges in and approaches to dealing with the first side of Web services
management are very similar to those in traditional application management.
However, Web services simplify certain aspects of application management
through their standardized abstractions. The second side of Web services man-

2http: //www. managementsoftware. hp. corn/
3http: //ca. com/unicenter
4http: //www. tivoli. com
'http: //WWW. oasis-open. org/committees/tc-home. php?wg-abbrev=wsdm

224 Related Work

agement (i.e., managing relationships with other Web services) raises a com-
pletely new set of challenges, since cross-enterprise interactions were not dealt
with before in application management. These are some of the challenges we
have addressed in our use cases (Chapter 4, Section 2.2). Applying seman-
tic technology can be leveraged in corresponding Web service management
systems to make them even more powerful by reasoning capabilities. Accord-
ingly, we have proposed such management systems as a possible platform for
semantic management in Chapter 8, Section 1.1. Besides WSDM, there are
also proprietary efforts, e.g., [Tosic et al., 20041.

Management of Application Servers
In contrast to the standardization efforts of application management, and also

of Web services management, the management of application servers remains a
proprietary effort. In principle, every application server defines its own manage-
ment model, with proprietary tools and graphical user interfaces. Some provide
integration with application management systems, e.g., IBM Websphere with
IBM ~ i v o l i . ~ Like Web service management systems, the management of ap-
plication servers can be improved by semantic technology as we proposed in
this thesis.

1.2 Application Management Schemas
The effort of developing a unified model for systems management emerged

from the Distributed Management Task Force (DMTF). This model is being
referred to as the Common Information Model (CIM) - an industry effort to
develop a common object model for management. The Applications Manage-
ment Working Committee of the DMTF has been working to unify the IETF,
POSIX, DMTF, and the Tivoli AMS models of application management. It is
interesting to note the similarities between these models and the different terms
that have been developed to represent the same concepts. For example, what the
POSIX model refers to as "file set," the DMTF refers to as "software element."

The DMTF realized the importance of developing a common model of an
application and of using a common terminology because future management
technologies will leverage standard models and nomenclatures. It is becoming
increasingly difficult for management application vendors to provide agents,
infrastructure and user interfaces for all of the complex networked elements.
Using a common model enables greater interoperability. Management appli-
cations developers may also leverage the information that is available. [Sturm
and Bumpus, 19981

6http: //www-306. ibm. com/sof tware/tivoli/f eatures/websphere/integration. html

Related Work 225

On the one hand, CIM is comparable to our work in conceptually harmonizing
the different existing schemas for application management. However, the CIM
schemas are semi-formal and do not allow reasoning as a consequence. On
the other hand, the CIM schemas have been considered as a potential source
for obtaining semantic descriptions (cf. Chapter 8, Section 1.2). For example,
there is a CIM schema for J2EE application servers as depicted in Figure 11.1

GroupComponent: ref ManagedSystemElement [key]
PartComponent: ref ManagedSystemElement [key]

PartComponent : ref SystemResource (7
4

I
ServceComponent

GroupComponent. ref Sew~ce (')
PartCornponent ref Sewlce (')

SystemComponent
GroupComponent : ref System (')
PartCornponent ' ref ManagedSystemElement (')

J
JZeeEJBlnModule

t GroupComponent ref JZeeEJBModule (1) -
PartComponent ref JZeeEJB (1 .n)

JPeeSewerlnDomain
GroupComponent ref JZeeDomain (1)
PartComponent ' ref JZeeSe~er (1 ..n)

GroupComponent: ref JZeeWebModule (1) -
PartComponent: ref JZeeSewlet (1 .n)

Figure 11.1. CIM for J2EE Application Servers. [h t t p : //www. dmtf . org]

Very similar approaches are application Management Information Bases
(MIB's) and the MOWS schema for Web service management. The first ap-
proach stems from the International Standards Organization (ISO), which in-
troduced the Simple Network Management Protocol (SNMP) defining a set
of objects called Management Information Bases (MIB's) for managing appli-
cations. There is a plethora of MIB's for different purposes, e.g., MIB's for
printers, routers, FTP servers, or for information modelling to support service
and network management integration [Daho et al., 20041. The second ap-
proach is the MOWS (Management of Web Services) Schema from OASIS,
which defines states and properties of managed Web service^.^

' h t t p : / / d o c s . o a s i s - o p e n . org/wsdm/2004/12/wsdm-mows- I . 0 . p d f

226 SEMANTIC MANAGEMENT OF MIDDLEWARE

2. Model-Driven Architectures
Throughout the history of computing systems, we have witnessed a remark-

able evolution regarding the level of software reuse. Several kinds of software
building blocks were developed with ever increasing abstraction and encapsu-
lation of functionality. In the earliest computer systems, functions were the
predominant software building blocks, returning the same result for a given in-
put every time. However, functions are not suitable as soon as outputs depend
on knowledge of previous deductions. In order to respond to this shortcom-
ing, subroutines and libraries were introduced in the sixties and seventies. It
quickly became apparent that sharing data between subroutines was desirable.
However, coordinating concurrent and competing access to a global data struc-
ture between different libraries proved to be a maintenance problem. Thus, the
object was born, encapsulating data and functionality (often called behavior in
this case). Objects are still small-scale compared to the size of the systems we
build today. It soon became apparent that there is benefit in reusing a collection
of related objects together. The result was yet another software building block,
viz., software components, enabling reuse at a higher level.

Even with these advances in the level of reuse, it is nonetheless difficult
to reuse applications. There are more and more reimplementations of exist-
ing functionality because the underlying platforms change (e.g., updates of the
operating system) or because of improving and progressing technology (e.g.,
new versions of Java). It is this shortcoming that the concept of Model-Driven
Architectures (MDA) addresses [Mellor et al., 20041. The principal idea of
MDA is to separate conceptual concerns from implementation-speciJic con-
cerns. MDA achieves this separation by factorizing the two concerns, spec-
ifying them separately and compiling them into an executable application.
Methodologies and tools of UML are exploited to capture the concerns by mod-
els. Platform-independent models specify the conceptual concerns, whereas
platform-specific models specify the implementation-specific concerns. Trans-
formation rules define how to obtain different platform-dependent models from
platform-independent ones. Thus, models become the unit of reuse and can be
considered an asset resilient to changing platforms and technologies.

There are approaches that apply MDA for middleware-based applications
[Gokhale et al., 2004, Brambilla et al., 20051, or application management
[Debusmann et al., 20041. However, in contrast to our work, MDA uses the
models mainly to specify development aspects with focus on distinguishing
platform-independent from platform-specific aspects, as well as on the defini-
tion of transformation rules between them. While something similar can be
done also for the management of middleware, the main use case of MDA is to
generate an executable application out of the platform-independent model. Our
approach focuses on run time relevant characteristics of component and service
management, such as which version of an application interface requires which

Related Work 227

versions of libraries. We exploit the logic-based semantics of ontologies for
querying the inference engine in an application server whether configurations
are valid or whether further components are needed. Ontologies are best-suited
for this purpose.

While UML has not been based on ontologies initially, there is a tendency to
bring the two worlds closer together. In 2003, the Object Management Group
(OMG), the institution responsible for MDA, issued a request for the proposal
of an Ontology Definition Metarnodel (ODM). This was done in order to support
the development of ontologies using UML modeling tools, the implementation
of ontologies in the W3C Web Ontology language OWL, as well as forward
and reverse engineering for ontologies. Several proposals have been issued so
far, e.g., [Hart et al., 20041. It remains to be seen whether ODM would allow
realizing our approach with UML and MDA technologies.

3. Web Services
We have already introduced the reader to Web services in Chapter 2, Section

3.2. We have seen that developers must face the multitude of descriptor files
introduced by WSDL [Christensen et al., 20011, WS-BPEL [Andrews et al.,
20051, WS-Security [Atkinson et al., 20021, WS-Transaction [Cabrera et al.,
20041, WS-Trust [BEA Systems et al., 20041, WSCI [Arkin et al., 20021,
WSCL [Banerji et al., 20021, WS-Coordination [Cabrera et al., 20031, UDDI
[UDDI Coalition, 20001, etc. Because of their sheer number and disjointness,
managing Web services with the WS* speciJication creates high costs for the
developer. However, several approaches clearly demonstrate that there is a ten-
dency to integrate all the disjoint information. The late JSR 181 [Trezzo and
Mihic, 20041, e.g., defines a standard way to build and deploy Web services
without learning and implementing generalized API's and deployment descrip-
tors. The new Java 1.5 source code metadata annotation mechanism is used to
flexibly define corresponding tags. Proprietary efforts like JBoss.Net and also
Microsoft's .NET IDE take a similar approach. The development is facilitated
because a familiarization with all the descriptor files is no longer necessary.

[Tai et al., 2004a1 investigate the combination of WS-BPEL with WS-
Coordination, WS-AtomicTransaction and WS-BusinessActivity using WS-
Policy to support the definition of production workflows for Web services. They
introduce coordination policies and specific WS-BPEL coordination policy at-
tachments to compose Web services that require coordination protocols for in-
teraction. They define the semantics of the proposed policy-based composition
model and discuss the methods, the programming model, and the middleware
support required for defining and executing composed and coordinated services.
In [Tai et al., 2004b1, they discuss a new approach to policy-based transactional
coordination of services. They propose attaching policies to WSDL and WS-

228 SEMANTIC MANAGEMENT OF MIDDLEWARE

BPEL definitions. The policies can be applied to the Web services specifications
WS-Coordination, WS-Transaction, and WS-ReliableMessaging.

These are just some of the approaches that show the tendency to integrate the
so far separated aspects of WS* descriptions. However, the missing coherent
formal model of WS* makes it difficult to ask for, possibly undesirable, con-
clusions that arise from integrating several WS* descriptions. In contrast, our
approach uses ontologies as explicit conceptual model whose underlying logic
provides concise formal semantics and allows reasoning with such descriptions.

An exception are [Agarwal et al., 20051, who find that the main approaches
taken thus far to standardize and compose Web services are piecemeal and insuf-
ficient. The business world has adopted a distributed programming approach in
which Web service instances are described using WSDL, composed into flows
with a language, such as WS-BPEL, and invoked with the SOAP protocol. The
field of Semantic Web Services (cf. Section 4) propounds the approach of for-
mally representing Web service capabilities in ontologies, and reasoning with
their composition using goal-oriented inferencing techniques from planning.
This new approach presents the first integrated work in composing Web ser-
vices end to end from specification to deployment by synergistically combining
the strengths of the above approaches.

4. Semantic Web Services
The principal objective of Semantic Web Services is a wide-reaching formal-

ization that allowsfull automation of the Web service management tasks, such
as discovery and composition [McIlraith et al., 20011. This field of research has
articulated the shortcomings of WS* standardizations and has been presenting
interesting proposals to counter some of them. The core of their proposals lies
in creating semantic standards for the markup of Web services. The potential
advantage is the reduction of management efforts to a minimum. The disad-
vantages, however, are also apparent. It is not clear, what kind of powerful
machinery could constitute a semantic model that would allow for full automa-
tion, nor does it appear to be possible that real-world software developers could
specify a semantic model of Web services that would be fine-grained enough
to allow for full automation anytime soon. Therefore, our approach of seman-
tic management of Web services does not propose to tackle full automation
of all Web service management tasks. We claim that the full breadth of Web
Service management requires an understanding of the world that is too deep
to be modelled explicitly. Instead, we have presented a more passive role for
semantic management of Web services - one that is driven by the needs of the
developers who must cope with the complexity of Web service integration and
WS* descriptions.

We now discuss several existing ontologies and frameworks for Semantic
Web Services. We can summarize the differences to all of them as follows: (i)

Related Work 229

the ontologies are of low quality with respect to the ontology quality criteria
introduced in Chapter 3, Section 1, page 41. They are hardly axiomatized and,
thus, cover many unintended models leading to conceptual ambiguity, loose de-
sign and narrow scope (as demonstrated by the example of OWL-S in Chapter
5, Section 3). This is in conflict with our goals of having a high-quality on-
tology with heavyweight axiomatization and reference characteristic. (ii) The
frameworks altogether aim at full automation of all management tasks incur-
ring high modelling efforts. In contrast, our approach arrives at a minimum of
management and modelling efforts as discussed at the beginning of Chapter 4.
In addition, we do not propose a semantic standard for Web service description,
such as some of the approaches do. The reverse engineering approach does
not intervene with existing WS* specifications (which have yet to gain accep-
tance besides WSDL and WS-BPEL). We apply semantic technology within
an application server and, thus, within the scope of an organizational unit, to
facilitate some of the typical management tasks.

4.1 OWL-S
As discussed in Chapter 5, Section 1, OWL-S [Martin et al., 20041 is one

of the first core ontologies explicitly aiming at automatic discovery, automatic
invocation, automatic composition and interoperation, as well as automatic
execution of Webxervices. We have inspected OWL-S and have come to the
conclusion that it is a big step forward with design principles suitable also for our
purposes. However, OWL-S exhibits shortcomings that stand in conflict with
our goals of high quality, heavyweight axiomatization, and reference purpose.
Our Core Ontology of Web Services can be seen as an improvement of OWL-S.
Along the same lines, previous efforts responded to some of the problems of
OWL-S. We briefly discuss the two initiatives we are aware of by describing
their motivation, the parts of OWL-S they focus on, the techniques they use, as
well as some initial results.

The first initiative [Narayanan and McIlraith, 20031 is motivated by the need
of formal semantics to describe, simulate, automatically compose, test and
verify Web service compositions. It focuses solely on the OWL-S Service-
Model, which provides all the constructs for specifying composition. The
authors establish a situation calculus semantics for the main elements in the
OWL-S ServiceModel (e.g., atomic and composite processes, conditional ef-
fects and outputs), and then translate it to the operational semantics provided
by Petri nets. This knowledge representation formalism has a rich theoretical
and tool support for the various composition tasks. Indeed, the semantics of
this knowledge representation mechanisms allows reusing an existing simu-
lation and modelling environment. Further, the authors were able to identify
more tractable subsets of OWL-S (less expressive but more efficient analysis
for verification, composition and model checking).

230 SEMANTIC MANAGEMENT OF MIDDLEWARE

The second effort [Ankolekar et al., 20021 also focuses only on the OWL-S
ServiceModel and proposes a concurrent operational semantics that incorpo-
rates subtype polymorphism. The motivation for this work is to provide an
initial reference semantics that would discover any possible ambiguity in the
developed language. It would also serve for developing techniques for auto-
mated verification of OWL-S models. Finally, if other Web standards would
provide a similar semantics, it would be much easier to compare them and to
understand their strengths and weaknesses. The authors of both efforts mutu-
ally acknowledge the similarity between the two proposed semantics, except
some minor details discussed in [Ankolekar et al., 20021.

Both approaches limit their attention to the OWL-S ServiceModel. From
a methodological perspective, the approaches provide independent reconstruc-
tions of OWL-S, while we embed the information represented in the OWL-
S ServiceModel in the larger context offered by the foundational ontology.
Therefore we can deduce, e.g., that OWL-S does not address the difference be-
tween a real-life object (e.g., a book), and its representational counterpart in an
information system (e.g., an ISBN number), an important ontological distinc-
tion. Finally, the semantics established by the approaches are not reflected in
their OWL formalization. In contrast, our ontologies inherit the axiomatization
from DOLCE and provide further axioms. Besides aiming at increased formal
axiomatization, it has been our goal to explain the concepts as precisely as pos-
sible. The analysis of OWL-S in Chapter 5, Section 3, also brings to surface
several shortcomings of OWL-S. Furthermore, one of the long term benefits of
having an ontology with reference characteristics is that it allows a comparison
among other ontologies (a goal also stated in [Ankolekar et al., 20021).

The actions on OWL-S are continued by the Semantic Web Services Initiative
Architecture committee (SWS A) , ~ whose objective is to develop architectural
and protocol abstractions forming a reference architecture to support Semantic
Web Service technologies. One of their proposals is the framework discussed
next: METEOR-S.

4.2 METEOR-S
The METEOR-S project at the LSDIS Lab, University of Georgia, aims to

extend WS* specifications with Semantic Web technologies to achieve greater
dynamism and s~a l ab i l i t~ .~ More specifically, METEOR-S focuses on adding
semantics to WSDL and UDDI, on adding semantics to WS-BPEL and on
a semi-automatic approach for annotating Web services described in WSDL.
The endeavor is to define and support the complete lifecycle of Semantic Web

Related Work 23 1

Services processes. Like with all other approaches, METEOR-S aims at full au-
tomation of all management tasks, while our approach aims at facilitating some
management tasks by keeping the modelling efforts minimal. An introduction
to the parts of the METEOR-S project follows.

Semantic Annotation of Web Services

The METEOR-S Web Service Annotation Framework (MWSAF) [Patil
et al., 20041 is a graphical tool that allows annotating existing Web service
descriptions with semantic descriptions according to an arbitrary ontology. The
tool facilitates the parsing of WSDL files and ontologies, enabling the user to
annotate Web service descriptions semi-automatically by a matching algorithm.
The matching algorithm works on the XML-Schema types of a WSDL descrip-
tion and a given domain ontology. Such an approach is very promising also for
our work because it allows obtaining semantic descriptions semi-automatically
(cf. Chapter 8, Section 1.2).

WSDL-S

WSDL-S [Akkiraju et al., 20051 is an evolutionary and compatible up-
grade of the existing WSDL descriptions. Semantic descriptions are attached
to WSDL descriptions whereby the expressiveness of WSDL is augmented with
semantics. This is done by employing concepts analogous to those in OWL-S,
while being agnostic to the semantic representation language. The advantage
of adding semantics to WSDL in such an evolutionary way is multi-fold. First,
users can, in an upwardly compatible way, describe both the semantics and
operation level details in WSDL - a language with which the developer com-
munity is familiar with. Second, by externalizing the semantic domain models,
WSDL-S takes an agnostic approach to ontology representation languages. This
allows Web service developers to annotate their Web services with their choice
of the ontology language (such as UML or OWL). This is significant since the
ability to reuse existing domain models expressed in modelling languages, such
as UML, can greatly alleviate the need to separately model semantics. More-
over, this approach realizes the need for the existence of multiples ontologies,
either from the same or different domains. Finally, it is relatively easy to update
the existing tooling around the WSDL specification to accommodate such an
incremental approach. According to the authors, this work is being provided as
input for the next version of WSDL that will support semantic representation.

Abstract Process Creation

The METEOR-S Web Service Composition Framework (MWSCF)
[Sivashanmugam et al., 20041 considers the fact that the activity of creat-
ing Web processes using Web services has been handled mostly at the syntactic

232 SEMANTIC MANAGEMENT OF MIDDLEWARE

level. Current composition standards focus on building the processes based on
the interface description of the participating services. The limitation of such
a rigid approach is that it does not allow businesses to dynamically change
partners and services. MWSCF enhances the current Web process composi-
tion techniques by using "Semantic Process Templates" to capture the semantic
requirements of the process. The semantic process templates can act as config-
urable modules for common industry processes maintaining the semantics of
the participating activities, control flow, intermediate calculations, conditional
branches and exposing it in an industry accepted interface. The templates are
instantiated to form executable processes according to the semantics of the ac-
tivities in the templates. The use of ontologies in template definitions allows
a much richer description of activity requirements and a more effective way of
locating services to carry out the activities in the executable Web process. Dur-
ing the discovery of services, the framework considers not only functionality,
but also the quality of service of the corresponding activities. The framework
combines the expressive power of the present Web service composition stan-
dards and the advantages of the Semantic Web techniques for process template
definition and Web service discovery.

Semantic Discovery of Web Services

The METEOR-S Web Service Discovery Infrastructure (MWSDI) [Venna
et al., 20051 supports Web service publication and discovery among multi-
ple registries. This work uses an ontology-based approach to organize reg-
istries, enabling semantic classification of all Web services based on specific
domains. Each of these registries supports semantic publication of the Web
services, which is used during the discovery process. Two algorithms for se-
mantic publication and one algorithm for semantic discovery of Web services
have been implemented. According to the authors, this semantic approach will
significantly improve Web services publication and discovery involving a large
number of registries.

Composition of Web Services

Automatically selecting new services which best fit a specific requirement
necessitates the quantifying of criteria for selection. In addition, there are
challenging issues of correctness and optimality. The "Constraint Driven Web
Service Composition" tool in METEOR-S [Aggarwal et al., 20041 allows pro-
cess designers to bind Web services to an abstract process, based on business
and process constraints, and generate an executable process. The approach is
to reduce much of the service composition problem to a constraint satisfaction
problem. It uses a multi-phase approach for constraint analysis.

Related Work 233

4.3 WSMO
The Web Service Modeling Ontology (WSMO) along with its related efforts

WSML and WSMX (see below) presents a complete framework for Seman-
tic Web Services, combining Semantic Web and Web service technologies.
The Web Service Modeling Framework (WSMF) [Fensel and Bussler, 20021 is
taken as a starting point, refined and extended by developing a formal ontology
and language. WSMF consists of four different main elements for describing
Semantic Web Services: (1) ontologies that provide the terminology used by
other elements, (2) goals that define the problems that should be solved by Web
services, (3) Web services descriptions that define various aspects of a Web ser-
vice and (4) mediators, which bypass interoperability problems. [Roman et al.,
20051

The Web Service Modeling Language (WSML) provides a formal syntax
and the semantics for the Web Service Modeling Ontology. WSML is based
on different logical formalisms, namely, description logics, first-order logic
and logic programming, which are useful for the modeling of Semantic Web
Services. WSML consists of a number of variants based on these different
logical formalisms, namely WSML-Core, WSML-DL, WSML-Flight, WSML-
Rule and WSML-Full. [de Bruijn et al., 20051

Finally, The Web Services Execution Environment (WSMX) is an execution
environment for dynamic discovery, selection, mediation and invocation of
Semantic Web Services. WSMX is developed as a reference implementation
of an execution environment for Web services. It manages a repository of
Web services, ontologies and mediators. According to the authors, WSMX
can achieve a user's goal by dynamically selecting a matching Web service,
mediating the data that needs to be communicated to this service and invoking
it. [Aiken and Zaremba, 20051

WSMO is no exception in that its goal is the full automation of all man-
agement tasks. Our approach, in contrast, aims at facilitating only some of
the typical Web service management tasks by a justifiable amount of semantic
modelling.

4.4 IRS
IRS-I1 (Internet Reasoning Service) is a framework whose main goal is to

support the publication, location, composition and execution of heterogeneous
Web services, augmented with semantic descriptions of their functionalities.
IRS-I1 has three main classes of features, which distinguish it among other
works on Semantic Web Services. First, it supports one-click publishing of
stand-alone software: IRS-I1 automatically creates the appropriate wrappers,
given pointers to the stand-alone code. Second, it explicitly distinguishes be-
tween tasks (what to do) and methods (how to achieve tasks), and, as a result

234 SEMANTIC MANAGEMENT OF MIDDLEWARE

supports capability-driven service invocation, flexible mappings from services
to problem specifications and dynamic, knowledge-based service selection. Fi-
nally, IRS-I1 services are Web service compatible. Standard Web services can
be trivially published through the IRS-I1 and any IRS-I1 service automatically
appears as a standard Web service to other Web service infrastructures [Motta
et al., 20031. Like with all other approaches, IRS aims at full automation of all
management tasks. Our approach of semantic management of Web services,
however, aims at facilitating some management tasks by keeping the modelling
efforts minimal.

4.5 KDSWS
The Knowledge-based Dynamic Semantic Web Services (KDSWS) frame-

work presents an agent-based approach to managing the brokering of Semantic
Web Services for use within a virtual organization. The framework provides
a formal model-based approach to implementing Web services that defines the
modelling, specification, design, implementation and deployment of systems
composed of Semantic Web Services. The goal of the framework is to sup-
port the automatic discovery, composition, execution and management of Web
services for the virtual organization in a protocol-independent manner. This
research is still at an abstract level and a proof of concept implementation of
the framework is planned to demonstrate and mature the facets of the research.
[Howard and Kerschberg, 20041 KDSWS' goal is the full automation of all
Web service management tasks, such as all other approaches. Our approach, in
contrast, aims at facilitating only some of the management tasks by a justifiable
amount of semantic modelling.

4.6 Other Approaches
There are several other approaches (as opposed to complete frameworks) that

try to exploit semantic technologies in existing Web services middleware. Two
approaches try to incorporate semantic technology in UDDI, for instance. The
first, [Voskob, 20041, stems from the OASIS'O itself and proposes a taxonomy
support for semantics in UDDI registries. The primary aim is to enable a better
discovery and matchmaking by leveraging the ontological descriptions. The
second tries to achieve similar goals by incorporating OWL-S profiles into the
UDDI registry [Paolucci et al., 2002al.

[Mandell and McIlraith, 20031 take into account that most semantic efforts
have been disconnected from the emerging WS* standards. Hence, they propose
a "bottom-up" approach of enriching WS-BPEL by semantics.

I0http: //www. oasis-open. org

Related Work 235

Furthermore, there are semantic sewice matchmakers that compare a given
service requirement description to several service offering descriptions and
choose the best fitting one. Several service matchmaking engines have been
prototypically implemented, e.g., [Li and Horrocks, 2003,Paolucci et al., 2002c,
Noia et al., 20031. Even the sophisticated task of automated policy matching
is currently approached in the field of Semantic Web Services. Corresponding
policy engines act on semantic policy descriptions and try to match them. There
are several prototypes available, e.g., [Tonti et al., 2003, Kagal et al., 2003,
Agarwal and Sprick, 2004,Uszok et al., 20041. It remains to be seen whether
the problems related to semantic interpretations of documents can be solved in
the full generality required for real-life service and policy matching. Instead,
we want to provide developers with some tool support in browsing, selecting
and handling services and policies at development time. Hence, we propose to
support the developers in their management tasks and not to replace them.

5. Miscellaneous

The final section groups related approaches that cannot be classified in the
aforementioned categories. We discuss software reuse systems (Section 5. I),
the DL IDL approach (Section 5.2), Microsoft's System Dejinition Model (Sec-
tion 5.3), the integration of software specijications (Section 5.4), as well as
ontologies comparable to our work (Section 5.5).

5.1 Software Reuse Systems

Classical software reuse systems are comparable to our work in that they
also need to describe software modules appropriately for efficient and precise
retrieval. Techniques, such as the faceted classification [Diaz, 19911, concen-
trate on representing the features of the software providers. Techniques, such as
the analogical software reuse [Massonet and van Lamsweerde, 19971, share a
representation of modules that is based on goals achieved by the software, roles
and conditions. [Zaremski and Wing, 19971 describe a specification language
and matching mechanism for software modules. They allow for multiple de-
grees of matching, but consider only syntactic information. UPML, the Unified
Problem-solving Method Development Language [Fensel et al., 19991, has
been developed to describe and implement intelligent broker architectures and
components to facilitate semi-automatic reuse and adaptation. It is a frame-
work for developing knowledge-intensive reasoning systems based on libraries
of generic problem-solving components that are represented by inputs, outputs,
preconditions and effects of tasks. However, none of these approaches focuses
on the aspects that have to be described for management purposes. Most of
them are also not based on logics, disallowing reasoning and querying.

236 SEMANTIC MANAGEMENT OF MIDDLEWARE

5.2 DL IDL
[Borgida and Devanbu, 19991 show how description logics can be used to

augment CORBA IDL specifications so that the compatibility testing of IDL
specifications, local consistency checking, and more thorough treatment of ex-
ceptions is possible. However, this approach just augments the syntactic part of
an API's description. That means DL IDL does not allow to model the meaning
or behavior of methods and parameters, such as our Core Software Ontology.
Given such information, our approach allows more powerful searches over a
large unfamiliar API, for instance. However, DL IDL could be extended in this
direction.

5.3 Microsoft SDM
The Dynamic Systems Initiative (DSI) is an industry effort led by Microsoft to

enhance the Windows platform and to deliver a coordinated set of solutions that
simplify and automate how businesses design, deploy and operate distributed
systems. The System Definition Model (SDM)" is a key technology component
of the DSI product roadmap that provides a common language (called meta-
model) used to create models that capture the organizational knowledge relevant
to entire distributed systems.

SDM takes a similar approach to ours because it tries to include heteroge-
neous information (in this case about software, hardware and network) in a
unified system model. SDM targets design, deployment and operation. The
first actual software tool implementing this strategy is the Visual Studio de-
velopment environment. SDM illustrates the trend of representing different
system aspects in a common framework, although it seems to rely solely on
XML without any underlying logic-based semantics.

5.4 Integration of Software Specifications
[Grosse-Rhode, 20041 addresses the model-based development of software

systems, which uses different views on a system specified in appropriate mod-
elling languages and techniques. These range from formal specification tech-
niques, such as process calculi, Petri nets and rule-based formalisms to semi-
formal software modelling languages, such as those in the UML family. Be-
cause of the unavoidable heterogeneity of the models, a semantic integration
is required to establish the correspondences of the models and to allow the
checking of the relative consistency.

The proposed integration approach is based on a common semantic domain
of abstract systems, their composition and development. Its applicability is
shown through semantic interpretations and compositional comparisons of dif-

Related Work 237

ferent specification approaches. Algebraic reference models are used to inte-
grate the different specification formalisms. Their operational semantics can be
faithfully rephrased in terms of algebraic transformation systems. This com-
mon semantic interpretation yields the possibility of formal comparisons of
heterogeneous specifications given in different languages even with different
underlying paradigms.

The initial problem that is addressed by this work is very similar to ours.
Grosse-Rhode tries to harmonize the different views of software development,
such as UML class diagrams or Petri nets, in a common model. However,
our focus is not on development, but rather on management. In addition, we
concentrate on typical middleware systems with their descriptor files. We use an
ontology with logic-based semantics as opposed to the algebraic approach. We
do so because we exploit the reasoning capabilities of corresponding inference
engines to support developers and administrators in their daily tasks.

5.5 Other Ontologies
There have been several efforts to define ontologies that overlap with the

ideas presented in Chapter 7. For example, the COHSE Java ontology12 offers
a formal schema for turning a Java software project into an ontology. The open
source project ~ n t r o s ~ e c t o r ' ~ is a back-end to the popular GNU compiler col-
lection g ~ ~ , ' 4 which generates an RDF defined ontology out of gcc compiled
source code. Thus, it works with all languages supported by gcc, for example,
C, C++, Java, Fortran and others. [Welty, 19951 offers a more profound and
sound ontology-based foundation to these levels of detail, analyzing the con-
structs available when programming. All these works provide support for using
ontologies in the area of software development but on a much finer grained level
than the work presented here.

An example of a higher level software component ontology in use is pro-
vided by [Ankolekar et al., 20031. Instead of the technological management
of software components as provided by the middleware layer and described
herein, her work focuses on the social and project-level management of open
source software projects. As we can see by these numerous examples, the use
of Semantic Web technologies in the area of software engineering is gaining
momentum. A task force within the Semantic Web Best Practises group has
been formed in order to organize and bring together these various efforts.15

I2http: //cohse . semanticweb. org/sof tware . html
I3http: //introspector. sourceforge .net
I4http: //gcc . gnu. org
I5http: //www . w3. org/2001/sw/BestPractices/SE/

Chapter 12

CONCLUSION & OUTLOOK

The contribution of this work is to solve some of the problems of the Middle-
ware community by applying the technologies of the Semantic Web community.
More specifically, the book positively answers its Cardinal Question: Can on-
tologies be used to facilitate the development and management of middleware-
based applications for developers and administrators? In this final chapter, we
provide a summary of the book in Section 1. In essence, we have subdivided
the Cardinal Question into three Main Questions. In each part of the document
we have been concerned with answering one of the Main Questions. Further-
more, we detail the contributions separately in Section 2. First, our approach
of semantic management allows the automation of some typical management
tasks prevailing in application servers and Web services middleware. Second,
we explicitly build our approach on the observation that there is a trade-off
between management and modelling efforts. Third, we provide a set of ontolo-
gies which are well-designed, avoiding the typical shortcomings of commonly
built ontologies. Open issues and possible directions for future research are
discussed in Section 3.

1. Summary
We have subdivided the Cardinal Question into the three Main Questions.

Below, we give a brief summary of how the three Main Questions have been
answered.

I How tojnd a good trade-off between modelling and management efforts?
In Part I, we have claimed that the full breadth of management requires an
understanding of the world that is too deep to be modelled explicitly. There
is a trade-off between expending efforts for management and expending
efforts for semantic modelling. The trade-off point was approached by

SEMANTIC MANAGEMENT OF MIDDLEWARE

identifying a set of use cases. Each of them responded to the questions
who uses the semantic descriptions?, what are they used for? and when
do they occur? The use cases also yielded a set of modelling requirements
for choosing which aspects our ontology should formalize.

I1 How to build a suitable management ontology? The modelling require-
ments that were derived in Part I serve as an input to Part 11, where we
have analyzed whether existing ontologies can be reused and adapted for
our purposes. In order to answer the question can an existing ontology
be reused for our purposes?, we have had a closer look at potential core
ontologies for the description of Web services and software components.
The conclusion was that existing ontologies exhibit severe problems that
conflict with our goals of having a high-quality management ontology.
Hence, we have decided to model an appropriate management ontology
anew. Appropriateness required answering the questions: how to ensure
high quality?, and how to decrease modelling efforts and enable reuse? We
have achieved these goals by: (i) axiomatizing the intended models of our
universe of discourse as closely as possible and (ii) capturing the idiosyn-
cracies of components and services and by being platform-independent at
the same time. The resulting management ontology can be downloaded at
http://cos.ontoware.org.

I11 How to realize semantic management of middleware? It was the purpose
of Part I11 to elaborate on all issues of realization. The ontology is merely
a passive object which has to be applied in an inference engine in order to
realize all the querying and reasoning tasks introduced in our use cases. The
first question that arose was: what is a suitable target platform? We have
chosen an application server because many use cases can be realized. The
next question, who provides semantic descriptions?, addressed the problem
that the number of manually provided descriptions must be kept as small
as possible because developers and administrators do not want to expend
additional efforts. Hence, we have elicited further options on how to arrive
at semantic descriptions of components and services. We have continued
by designing an ontology-based application server in a piecemeal manner.
In order to respond to how to implement semantic management?, we have
reused an existing application server and have leveraged the wealth of tools
provided by an existing ontology tool suite. Another significant body of
work elaborated on the steps necessary to reuse and apply our management
ontology in this specific implementation (how to reuse the ontology?). Our
prototypical implementation, the KAON SERVER, can be obtained from
http : //kaon . semanticweb. org/server.

Conclusion & Outlook 24 1

2. Contributions
The book proposes the semantic management of middleware-based applica-

tions to support the developer and administrator. That means using an ontol-
ogy to make the underlying conceptual model of middleware elements explicit
by formal logic-based semantics. Therefore, semantic descriptions of such
middleware-elements may be queried, may foresight required actions or may
be checked to avoid inconsistent system configurations. The contributions can
be factorized as follows:

State-of-the-art Ontology Engineering Commonly and often naively built
ontologies suffer from conceptual ambiguity, poor axiomatization, loose
design and narrow scope. They are often reduced to simple taxonomies and
leave open many interpretations of their concepts and associations. We have
responded to such shortcomings by adopting the advanced theory of Guarino
and have introduced a new classification of ontologies in order to explain
their different uses. We have carefully chosen an appropriate foundational
ontology on the basis of specific ontological choices. The foundational on-
tology was used as a modelling basis and extended by highly axiomatized
core ontologies.

We have shown how to develop and use the ontological foundations of this
work in a concrete software environment. This was done in a way that
the usage of the resulting middleware infrastructure seems amenable to a
sophisticated software developer even though the development of a complex
foundational ontology may have to be left to some few specialists.

Finally, the extensive axiomatization of the management ontology and, thus,
its reference characteristic, makes evident that there are only minor differ-
ences between modelling software components and modelling Web services.

Reduction of Management Efforts Another novelty of our approach is to use,
adapt, extend and apply semantic technology to automate some of the man-
agement tasks of application server and Web services middleware. Such
middleware solutions are very complex software products that are hard to
tame because of the intricacies of building distributed systems. So far, their
functionalities have mostly been developed and managed with the help of
administration tools and corresponding configuration files, recently in XML.
Though this constitutes a very flexible way of developing and administrat-
ing a distributed application, the disadvantage is that the conceptual model
underlying the different configurations is only implicit. Hence, its bits and
pieces are difficult to retrieve, survey, check for validity and maintain. To
remedy such problems, we contribute an ontology-based approach to sup-
port the development and administration of middleware-based applications.
The ontology captures properties of, relationships between and behaviors

242 SEMANTIC MANAGEMENT OF MIDDLEWARE

of the components and services that are required for development and ad-
ministration purposes. The ontology is an explicit conceptual model with
formal logic-based semantics. Therefore, its descriptions may be queried
and reasoned with. Thus, the ontology-based approach retains the original
flexibility in configuring and running the middleware, but it adds new capa-
bilities for the developer and user of the system. The proposed scheme is
prototypically implemented in an open-source application server.

Consideration of Modelling Efforts Our approach is one of the first that ac-
knowledges and explicitly builds on the observation that the use of declar-
ative specifications, such as those in Web services, or formal declarative
specifications, such as in Semantic Web Services, comes with economic
modelling costs that need to be justified by savings in other places.

This lets us presume that formal specifications with the objective of fully
automatic Web service composition and orchestration remain a valid re-
search topic, but one that will find its applications in niches rather than in
wide-spread adoption by software developers.

3. Open Issues
Every solution raises new problems, and our work is no exception here.

First, the scope of this work could be extended to other middleware platforms.
Second, its prototypical implementation could be extended to a full-fledged
solution. Third, further research is required for a concise comparison of man-
agement efforts vs. reasoning capabilities. Fourth, the assessment of the benefits
could be extended to a comprehensive economic analysis. Last but not least,
the realization of semantic managements will hopefully culminate in industry
adoption.

Scope Although the name of the book is "semantic management of middle-
ware" we have limited its focus on application servers and Web services.
Consequently, the solution we provide concentrates on the semantic man-
agement of software components and Web services. Even within the limited
scope we have only scratched the surface with the identified use cases. All of
them are subject to be discussed in much more detail. Some of them might
even require separate treatment. In addition, there are probably dozens of
other use cases where semantic technology can be fruitfully applied.

The diversity of current middleware products gives rise to other solutions
and middleware elements. We have already considered other platforms, as
well, which could benefit from semantic technology, e.g., software IDE's or
Web service composition engines, let alone the more recent developments
in the areas of grid or peer-to-peer computing [Haase et al., 20041.

Conclusion & Outlook 243

Implementation The implementation of the proposed design, the KAON
SERVER, is a prototype, which realizes only a subset of the use cases.
This is not surprising, because the breadth and depth of the presented use
cases are large and each use case might be extended to a whole book. It
is therefore required to expend much more manpower into implementation
details.

Also, the semantic management of Web services necessitates many more
details than presented in this book. Although the problems are similar to the
semantic management of software components, the situation here is more
complex due to the mere fact of distribution, which entails network delays,
reliability, trust or additional security issues. Considering all these issues,
easily fills additional books. Furthermore, we have only prototypically
realized a subset of the required design elements for semantic management
of Web services, viz., the Web service connector and the metadata collector.

Management Efforts vs. Reasoning Capabilities The KAON toolsuite is
used as the semantic technology in our prototype because its API offers
a comprehensive set of features in order to control the application server
with an ontology. However, it must be said that KAON's reasoning capabil-
ities are quite limited. In essence, there is not much more than subsumption,
transitivity and symmetry. The use cases require a whole bandwidth of rea-
soning capabilities: one requires subsumption reasoning; another uses the
reified satisfaction of Descriptions & Situations; others require browsing
and querying; and so forth. As a consequence, some use cases cannot be
realized with KAON or require management efforts that could have been
saved with more powerful reasoning. Further research is necessary for a
concise comparison of management efforts vs. reasoning capabilities. For
example, the currently developed successor of KAON, viz., KAON~, ' is
based on a more expressive description logic, and even allows the definition
of rules.

Economic Analysis of Semantic Management Our assessment of the bene-
fits of semantic management is based on a qualitative comparison between
modelling and management efforts with and without semantic management.
However, a full assessment will need to include further crucial factors (cf.
[Wolff et al., 20051 for an initial, extended assessment): (i) the application
requirements, such as the number and size of applications, the frequency of
changes, or the required service level. (ii) the organizational factors, e.g.,
the number of developers and administrators, their skills, their turnover, the
learning curves for using deployment descriptors or for using semantic tech-

'http: //kaon2. semanticweb. org

244 SEMANTIC MANAGEMENT OF MIDDLEWARE

nology, etc. (iii) the service characteristics, i.e., the number of Web services,
as well as their diversity and complexity. Future research should, therefore,
strive for a comprehensive economic analysis of the semantic management
approach.

Industry Adoption The ideal platform for bringing this research more towards
industry is the JBoss application server, of course. This is not only because
our prototype builds on JBoss, but also because JBoss is open-source and,
thus, leaves more room for experiments.

The success of such an approach heavily depends on usability and industry
adoption by software developers and administrators, who will not be very
willing to familiarize with a large new paradigm when they are just getting
used to deployment and WS* descriptors. The working with ontologies
must be as seamless and intuitive as ever possible. Hence, additional efforts
have to be invested to adopt the administration console, which is merely an
ontology browser at the moment. It should hide the ontology idiosyncracies
and adapt to the typical administrator to be more intuitive.

Appendix A
Taxonomies

F
ig

ur
e

A
. I

.
D

O
L

C
E

.

Fi
gu

re

Ag
en

tiv
eR

ol
e

N
on

Ag
en

tiv
eR

ol
e

Fi
gu
re
 A

.2
.

D
es

cr
ip

tio
ns

 &
 S

itu
at

io
ns

.

1 D
nS

: D
es

cr
ip

tio
ns

 8
Si

tu
at

io
ns

I

I
D

0L
C

E:
So

ci
al

O
bj

ec
t

I
Ac

tiv
ity

Fi
gu
re
 A

.3
.

O
nt

ol
og

y
of

 P
la

ns
.

I D
nS

: D
es

cr
ip

tio
ns

 &
 S

itu
at

io
ns

1

D
0L

C
E:

Pa
rti

cu
la

r
I

D
0L

C
E:

Ph
ys

ica
lE

nd
ur

an
t

D
0L

C
E:

N
on

Ph
ys

ic
al

En
du

ra
nt

A

Ph
ys

ica
lR

ea
liz

at
io

n
D

0L
C

E:
Ph

ys
ic

al
O

bj
ec

t
I

D
0L

C
E:

N
on

Ph
ys

ic
al

O
bj

ec
t

I
I

In
fo

rm
at

io
nR

ea
liz

at
io

n
D0

LC
E:

Ag
en

tii
eP

hy
si

ca
lO

bj
ec

t
I

D
0L

C
E:

So
cia

lO
bj

ec
t

Dn
S:

Ag
en

t

Ex
pr

es
sio

n
O

bj
ec

t
O

bj
ec

t

C
la

ss
'

Sy
st

em

ca
tio

n
C

om
bi

na
to

ria
l

Sy
st

em

Sy
st

em

M
or

ph
em

e
l

o
r

d

F
ig

ur
e

A
.4

.
O

nt
ol

og
y

of
 I

nf
or

m
at

io
n

O
bj

ec
ts

.

Dn
S:

 D
es

cr
ip

tio
ns

 &
Si

tu
at

io
ns

D

0L
C

E:
Pa

rti
cu

la
r

O
oP

: O
nt

ol
og

y o
f P

la
ns

D
0L

C
E:

En
du

ra
nt

D

0L
C

E:
Pe

rd
ur

an
t

4

I
D

0L
C

E:
Ph

ys
ic

al
En

du
ra

nt

D
0L

C
E:

N
on

Ph
ys

ica
lE

nd
ur

an
t

D
0L

C
E:

Ev
en

t

4

I
D

O
LC

E:
Ph

~s
ica

l
0I

O
:P

hy
si

ca
lR

ea
liz

at
io

n
D

0L
C

E:
N

on
Ph

ys
ic

al
O

bj
ec

t

I
D

0L
C

E:
Ac

co
m

pl
is

hm
en

t
O

bj
ec

t
I

I
I

I
D

0L
C

E:
N

on
Ag

en
tiv

e
O

IO
:ln

fo
rm

at
io

nR
ea

liz
at

io
n

D
0L

C
E:

So
ci

al
O

bj
ec

t
00

P:
Ac

tiv
ity

Ph
ys

ic
al

ob
je

ct

I
I
-
 I

D
0L

C
E:

M
at

er
ia

lA
rti

fa
ct

C

om
pu

ta
tio

na
lO

bj
ec

t
D

0L
C

E:
N

on
Ag

en
tiv

eS
oc

ia
lO

bj
ec

t
D

0L
C

E:
C

ol
le

ct
io

n
C

om
pu

ta
tio

na
lA

ct
iv

ity

I
H

ar
dw

ar
e

D
nS

:N
on

Ag
en

tiv
eR

ol
e

Ex
ce

pt
io

n
Po

lic
yo

bj
ec

t

Fi
gu
re
 A

.5
.

C
or

e
So

ft
w

ar
e

O
nt

ol
og

y.

D
nS

: D
es

cr
ip

tio
ns

 &
Si

tu
at

io
ns

O

oP
: O

nt
ol

og
y

o f
 P

la
ns

01

0:
 O

nf
ol

og
y

o f
 In

fo
rm

at
io

n O
bj

ec
ts

C

SO
: C

or
e

So
ftw

ar
e

O
nt

ol
og

y

I
So

ftw
ar

eC
om

po
ne

nt

F
ig

ur
e

A
.6

.
C

or
e

O
nt

ol
og

y
of

 S
of

tw
ar

e
C

om
po

ne
nt

s.

D
0L

C
E:

Pa
rti

cu
la

r

I
D

0L
C

E:
En

du
ra

nt

I
D

0L
C

E:
N

on
Ph

ys
ic

al
En

du
ra

nt

I
D

0L
C

E:
N

on
Ph

ys
ic

al
O

bj
ec

t

I
D

0L
C

E:
So

ci
al

O
bj

ec
t

I
D

0L
C

E:
N

on
Ag

en
tiv

eS
oc

ia
lO

bj
ec

t

D
nS

:P
ar

am
et

er

C
ha

ra
ct

er
is

tic

0o
P:

Pl
an

Li

ce
ns

e
In

te
rfa

ce

So
ftw

ar
eL

ib
ra

ry

C
S0

:S
of

tw
ar

e
C

om
po

ne
nt

pr
of

ile

Fr
am

ew
or

ks
pe

ci
fic

at
io

n

Appendix A: Taxonomies

01
0:
 O

nf
ol

og
y

of
 In

fo
rm

at
io

n O
bj

ec
ts

CS

O
: C

or
e

So
ftw

ar
e

O
nt

ol
og

y

Ar
gu

m
en

t
C

0S
C

:S
of

tw
ar

eL
ib

ra
ry

C

S0
:S

of
tw

ar
e

C
om

po
ne

nt
pr

of
ile

C

om
po

ne
nt

pr
of

ile

I
Pr

ox
y

I
~

o
m

~
o

n
e

n
t~

ro
fi

le

M
Be

an

Fi
gu
re
 A

.8
.

K
A

O
N

 S
E

R
V

E
R

 O
nt

ol
og

y.

References

Abiteboul, Serge, Hull, Richard, and Vianu, Victor (1995). Foundations of Databases. Addison-
Wesley.

Agarwal, Sudhir, Handschuh, Siegfried, and Staab, Steffen (2004). Annotation, Composition
and Invocation of Semantic Web Services. Journal of Web Semantics, 2(1):31-48.

Agarwal, Sudhir and Sprick, Barbara (2004). Access Control for Semantic Web Services. In
Proceedings of the IEEE International Conference on Web Services (ICWS'04), June 6-9,
2004, Sun Diego, California, USA, pages 770-773. IEEE Computer Society.

Agarwal, Vikas, Dasgupta, Koustuv, Karnik, Neeran, Kumar, Arun, Kundu, Ashish, Mittal,
Sumit, and Srivastava, Biplav (2005). A Service Creation Environment Based on End to
End Composition of Web Services. In Ellis, Allan and Hagino, Tatsuya, editors, Proceedings
of the 14th International Conference on World Wide Web, WWW 2005, Chiba, Japan, May
10-14, 2005, pages 128-137. ACM.

Aggarwal, Rohit, Verma, Kunal, Miller, John, and Milnor, William (2004). Constraint Driven
Web Service Composition in METEOR-S. In Proceedings, 2004 IEEE International Confer-
ence on Services Computing (SCC104), pages 23-30. IEEE Computer Society.

Aiken, David and Zaremba, Maciej (2005). WSMX Documentation. WSMX Working Draft
D22.0v0.2, SDK WSMX working group.

Akkiraju, Rama, Farrell, Joel, Miller, John, Nagarajan, Meenakshi, Schmidt, Marc-Thomas,
Sheth, Amit, and Verma, Kunal(2005). Web Service Semantics - WSDL-S. Technical report,
IBM Research and LSDIS Lab, University of Georgia.

Allen, James (1984). Towards a General Theory of Action and Time. Artificial Intelligence,
23: 123-154.

Alonso, Gustavo, Casati, Fabio, Kuno, Harumi, and Machiraju, Vijay (2004). Web Services.
Springer.

Andrews, Tony, Curbera, Francisco, Dholakia, Hitesh, Goland, Yaron, Leymann, Jo-
hannes Klein Frank, Liu, Kevin, Roller, Dieter, Smith, Doug, Thatte, Satish, Trick-
ovic, Ivana, and Weerawarana, Sanjiva (2005). Business Process Execution Language for
Web Services Version 1.1. Specification. http : //www- 128. ibm. com/developerworks/
library/specification/ws-bpel/.

Ankolekar, Anupriya, Herbsleb, James, and Sycara, Katia (2003). Addressing Challenges to
Open Source Collaboration With the Semantic Web. In Feller, Joseph, Fitzgerald, Brian,
Hissam, Scott, and Lakhani, Karim, editors, Proceedings of Taking Stock of the Bazaar: The
3rd Workshop on Open Source Software Engineering, the 25th International Conference on
Software Engineering (ICSE), Washington, D.C. IEEE Computer Society.

SEMANTIC MANAGEMENT OF MIDDLEWARE

Ankolekar, Anupriya, Huch, Frank, and Sycara, Katia (2002). Concurrent Execution Semantics
for DAML-S with Subtypes. In Horrocks, Ian and Hendler, James A., editors, lstlnternational
Semantic Web Conference (ISWC), Proceedings, volume 2342 of LNCS. Springer.

Aristotle (350 B.C.). Metaphysics Book IV Part 2. http: //classics .mit . edu/Aristotle/.
Translated by W.D. Ross.

Arkin, Assaf, Askary, Sid, Fordin, Scott, Jekeli, Wolfgang, Kawaguchi, Kohsuke, Orchard, David,
Pogliani, Stefano, Riemer, Karsten, Struble, Susan, Takacsi-Nagy, Pal, Trickovic, Ivana, and
Zimek, Sinisa (2002). Web Service Choreography Interface (WSCI). W3C Note. http:
//~~~.w3.org/TR/wsci.

Atkinson, Bob, Della-Libera, Giovanni, Hada, Satoshi, Hondo, Maryann, Hallam-Baker, Phillip,
Klein, Johannes, LaMacchia, Brian, Leach, Paul, Manferdelli, John, Maruyama, Hiroshi,
Nadalin, Anthony, Prafullchandra, Nataraj Nagaratnam Hemma, Shewchuk, John, and Simon,
Dan (2002). Web Services Security (WS-Security). Specification. http : //www- 106. ibm.
com/developerworks/webservices/library/ws-secure/.

Baader, Franz, Horrocks, Ian, and Sattler, Ulrike (2003). Description Logics, volume Handbook
on Ontologies in Information Systems of International Handbooks on Information Systems,
chapter I: Ontology Representation and Reasoning, pages 3-31. Steffen Staab and Rudi
Studer, Eds., Springer.

Baida, Ziv, Gordijn, Jaap, Omelayenko, Borys, and Akkermans, Hans (2004). A Shared Termi-
nology for Online Service Provisioning. In Proceedings of the Sixth International Conference
on Electronic Commerce (ICECOd), Delf, The Netherlands.

Bajaj, Siddharth, Box, Don, Chappell, Dave, Curbera, Francisco, Daniels, Glen, Hallam-Baker,
Phillip, Hondo, Maryann, Kaler, Chris, Langworthy, Dave, Malhotra, Ashok, Nadalin,
Anthony, Nagaratnam, Nataraj, Nottingham, Mark, Prafullchandra, Hemma, von Riegen,
Claus, Schlimmer, Jeffrey, Sharp, Chris, and Shewchuk, John (2004). Web Services Policy
Framework (WS-Policy). Specification. http : //www- 128. ibm. com/developerworks/
library/specification/ws-polfram.

Banerjee, Jay, Kim, Won, Kim, Hyoung-Joo, and Korth, Henry F. (1987). Semantics and Imple-
mentation of Schema Evolution in Object-oriented Databases. In SIGMOD '87: Proceedings
of the 1987ACMSIGMOD international conference on Management of data, pages 3 1 1-322,
New York, NY, USA. ACM Press.

Banerji, Arindam, Bartolini, Claudio, Beringer, Dorothea, Chopella, Venkatesh, Govindarajan,
Kannan, Karp, Alan, Kuno, Harumi, Lemon, Mike, Pogossiants, Gregory, Sharma, Shamik,
and Williams, Scott (2002). Web Services Conversation Language (WSCL). W3C Note.
http://www.w3.org/TR/wscllO/.

BEA Systems, Computer Associates International, IBM Corporation, Layer 7 Technolo-
gies, Microsoft Corporation, Netegrity, Oblix, OpenNetwork Technologies, Ping Iden-
tity Corporation, Reactivity, RSA Security, VeriSign, and Westbridge Technology (2004).
Web Services Trust Language (WS-Trust). Specification. http : //www- 106. ibm. c o d
developerworks/library/specification/ws-trust/.

Bechhofer, S., Horrocks, I., Goble, C., and Stevens, R. (2001). OilEd: A reason-able ontology
editor for the Semantic Web. In Proceedings of the Joint German Austrian Conference on
Artijcial Intelligence, volume 21 74 of Lecture Notes In ArtiJicial Intelligence, pages 396-408.
Springer.

Beeri, Catriel and Ramakrishnan, Raghu (1987). On the Power of Magic. In Proceedings of the
Sixth ACM SIGACTSIGMOD-SIGART Symposium on Principles of Database Systems,
March 23-25, 1987, Sun Diego, California, pages 269-283. ACM.

Bennett, Brandon, Dixon, Clare, Fisher, Michael, Hustadt, Ullrich, Franconi, Enrico, Horrocks,
Ian, and de Rijke, Maarten (2002). Combinations of Modal Logics. Artijcial Intelligence
Review, 17(1): 1-20.

REFERENCES 257

Berners-Lee, Tim (1998). Semantic Web Roadmap. http : //www . w3. org/DesignIssues/
Semantic. html.

Bemers-Lee, Tim (2000). Semantic Web - XML 2000. http: //www . w3. org/2000/Talks/
1206-xm12k-tbl/Overview.html.

Bernstein, Philip A. (1996). Middleware: A Model for Distributed System Services. Communi-
cations of the ACM, 39(2):86-98.

Biron, Paul V. and Malhotra, Ashok (2001). XML Schema part 2: Datatypes. W3C Recommen-
dation. http://www.w3.org/TR/xmlschema-21.

Birrell, Andrew D. and Nelson, Bruce Jay (1984). Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems, 2(1):39-59.

Booch, Grady, Jacobson, Ivar, and Rumbaugh, James (1998). The Un$ed Modeling Language
User Guide, volume 1. Addison-Wesley.

Booth, David, Haas, Hugo, McCabe, Francis, Newcomer, Eric, Champion, Michael, Ferris, Chris,
and Orchard, David (2004). Web Services Architecture. http://www.w3.org/TR/ws-arch/.

Borgida, Alex and Devanbu, Premkumar (1999). Adding more "DL" to IDL: Towards more
Knowledgeable Component Inter-operability. In Proceedings of the 21st International Con-
ference on Software engineering, pages 378-387. IEEE Computer Society Press.

Borgida, Alexander and Serafini, Luciano (2002). Distributed Description Logics: Directed Do-
main Correspondences in Federated Information Sources. In Meersman, Robert and Tari,
Zahir, editors, On the Move to Meaningful Internet Systems, 2002 - DOA/CooplS/ODBASE
2002 Confederated International Conferences DOA, CooplS and ODBASE 2002 Iwine, Cal-
ifornia, USA, October 30 - November l , 2002, Proceedings, volume 2519 of Lecture Notes
in Computer Science, pages 36-53. Springer.

Borgo, Stefano, Gangemi, Aldo, Guarino, Nicola, Masolo, Claudio, and Oltramari, Alessan-
dro (2002). Ontology RoadMap. Wonderweb Deliverable D15. http://wonderweb.
semanticweb.org.

Borgo, Stefano, Guarino, Nicola, and Masolo, Claudio (1996). A Pointless Theory of Space
Based on Strong Connection and Congruence. In Proceedings of the Fifth International
Conference on Principles of Knowledge Representation and Reasoning (KR196), Cambridge,
Massachusetts, USA, November 5-8, 1996, pages 220-229. Morgan Kaufmann.

Bozsak, E., Ehrig, Marc, Handschuh, Siegfried, Hotho, Andreas, Maedche, Alexander, Motik,
Boris, Oberle, Daniel, Schmitz, Christoph, Staab, Steffen, Stojanovic, Ljiljana, Stojanovic,
Nenad, Studer, Rudi, Stumme, Gerd, Sure, York, Tane, Julien, Volz, Raphael, and Zacharias,
Valentin (2002). KAON - Towards a large scale Semantic Web. In Bauknecht, Kurt, Tjoa,
A. Min, and Quirchmayr, Gerald, editors, E-Commerce and Web Technologies, Third Interna-
tional Conference, EC-Web 2002, Aix-en-Provence, France, September 2-6, 2002, Proceed-
ings, volume 2455 of Lecture Notes in Computer Science, pages 304-313. Springer.

Brambilla, Marco, Ceri, Stefano, Fraternali, Piero, Acerbis, Roberto, and Bongio, Aldo (2005).
Model-driven Design of Service-enabled Web Applications. In Proceedings of the ACM
SIGMOD/PODS 2005 Conference, Baltimore, Maryland. ACM Press.

Buschmann, Frank, Meunier, Regine, Rohnert, Hans, Sommerlad, Peter, and Stal, Michael
(1996). Pattern-Oriented Software Architecture, Volume 1: A System of Patterns, volume 1.
John Wiley and Son Ltd.

Cabrera, Felipe, Copeland, George, Cox, Bill, Klein, Tom Freund Johannes, Storey, Tony, and
Thatte, Satish (2004). Web Services Transaction (WS-Transaction). Specification. http:
//www-128.ibm.com/developerworks/library/specification/ws-tx/.

Cabrera, Luis Felipe, Copeland, George, Cox, William, Feingold, Max, Freund, Tom, John-
son, Jim, Kaler, Chris, Klein, Johannes, Langworthy, David, Nadalin, Anthony, Orchard,
David, Robinson, Ian, Shewchuk, John, and Storey, Tony (2003). Web Services Coordi-

25 8 SEMANTIC MANAGEMENT OF MIDDLEWARE

nation (WS-Coordination). Specification. http : //www- 106. ibm. com/developerworks/
library/ws-coor/.

Campbell, A., Coulson, G., and Kounavis, M. (1999). Managing Complexity: Middleware Ex-
plained. IT Professional, IEEE Computer Sociery, 1 (5):22-28.

Cardoso, J., Sheth, Amit P., Miller, John A., Arnold, Jonathan, and Kochut, Krys J. (2004).
Modeling Quality of Service for Workflows and Web Service Processes. Journal of Web
Semantics, 1 (3):28 1-308.

Casati, Roberto and Varzi, Achille C. (1995). Holes and other Superjicialities. MIT Press.
Chen, Peter Pin-Shan (1976). The Entity-Relationship Model - Toward a Unified View of

Data. ACM Transactions on Database Systems, 1(1):9-36.
Cho, Young-Hyun and Ejiri, Masayoshi, editors (2004). Managing Next Generation Conver-

gence Networks and Services: Proceedings of the 2004 IEEELFIP Network Operations and
Management Symposium (NOMS), 2004, IEEWIFIP, Seoul, Korea, April, 2004. IEEE.

Christensen, Erik, Curbera, Francisco, Meredith, Greg, and Weerawarana, Sanjiva (2001). Web
Services Description Language (WSDL). W3C Note. http : //www . w3. org/TR/wsdl.

Curry, Edward (2004a). Adaptive and Reflective Middleware. In [Mahmoud, 20041, chapter 2,
pages 29-52.

Curry, Edward (2004b). Message-Oriented Middleware. In [Mahmoud, 20041, chapter 1, pages
1-28.

Daho, Z.B., Simoni, N., Chevanne, M., and Betge-Brezetz, S. (2004). An Information model for
Service and Network Management Integration: From Needs Towards Solutions. In [Cho and
Ejiri, 20041, pages 527-540.

Das, Subrata Kumar (1992). Deductive Databases and Logic Programming. Addison Wesley.
de Bruijn, Jos, Lausen, Holger, Krummenacher, Reto, Polleres, Axel, Predoiu, Livia, Kifer,

Michael, and Fensel, Dieter (2005). Web Service Modeling Language (WSML). WSML
Final Draft D16.lv0.2, SDK WSML working group.

Debusmann, M., Kroger, R., and Geihs, K. (2004). Unifying Service Level Management Using
an MDA-based Approach. In [Cho and Ejiri, 20041, pages 801-814.

Decker, Stefan, Erdmann, Michael, Fensel, Dieter, and Studer, Rudi (1998). Ontobroker: Ontol-
ogy Based Access to Distributed and Semi-structured Information. In Database Semantics -
Semantic Issues in Multimedia Systems, volume 138 of IFIP Conference Proceedings, pages
351-369. Kluwer.

Diaz, Ruben Prieto (1991). Implementing Faceted Classification for Software Reuse. Commu-
nications of the ACM, 34(5):88-97.

Dumbill, Edd (2001). Building the Semantic Web. http: //www . xml. com/pub/a/2001/03/
07/buildingsw. html. Knowledge Technologies Conference 2001, March 4-7, Austin Con-
vention Center, Austin, TX, USA, Keynote presentation.

Eberhart, Andreas (2004). Ad-hoc Invocation of Semantic Web Services. In Proceedings of the
IEEE International Conference on Web Services (ICWS'04), June 6-9, 2004, Sun Diego,
California, USA, pages 116-123. IEEE Computer Society.

Ehrig, Marc and Staab, Steffen (2004). QOM -Quick Ontology Mapping. In McIlraith, Sheila A.,
Plexousakis, Dimitris, and van Harmelen, Frank, editors, Proceedings of the Third Interna-
tional Semantic Web Conference, volume 3298 of LNCS, pages 683-697, Hiroshima, Japan.
Springer.

Elrad, Tzilla, Filman, Robert E., and Bader, Atef (2001). Aspect-oriented Programming: Intro-
duction. Communications of the ACM, 44(10):29-32.

Euzenat, JBr6me (2004). An API for Ontology Alignment. In McIlraith, Sheila A., Plexousakis,
Dimitris, and van Harmelen, Frank, editors, The Semantic Web - ISWC 2004: Third Inter-
national Semantic Web Conference,Hiroshima, Japan, November 7-1 1, 2004. Proceedings,
volume 3298 of Lecture Notes in Computer Science, pages 698-712. Springer.

REFERENCES 259

Fensel, Dieter, Benjamins, Richard, Motta, Enrico, and Wielinga, Bob J. (1999). UPML: A
Framework for Knowledge System Reuse. In Dean, Thomas, editor, Proceedings of the Six-
teenth International Joint Conference on Artijcial Intelligence, IJCAI 99, Stockholm, Sweden,
July 31 -August 6, 1999. 2 Volumes, 1450 pages, pages 16-23. Morgan Kaufmann.

Fensel, Dieter and Bussler, Christoph (2002). The Web Service Modeling Framework WSMF.
Electronic Commerce: Research and Applications, 1 : 113-137.

Gabel, Thomas, Sure, York, and Volker, Johanna (2004). KAON - An Overview. Technical
report, University of Karlsruhe, Institute AIFB & FZI - Research Center for Information
Technologies, Karlsruhe, Germany. http : //kaon . semanticweb. org.

Gangemi, A., Catenacci, C., and Battaglia, M. (2004a). Inflammation Ontology Design Pattern:
an Exercise in Building a Core Biomedical Ontology with Descriptions and Situations. In
Pisanelli, D.M., editor, Ontolgies in Medicine, pages 64-80. IOS Press.

Gangemi, Aldo, Borgo, Stefano, Catenacci, Carola, and Lehmann, Jos (2004b). Task Taxonomies
for Knowledge Content. Metokis Deliverable D07.

Gangemi, Aldo, Fisseha, Frehiwot, Keizer, Johannes, Lauser, Boris, Lehmann, Jos, Liang, Anita,
Pettman, Ian, Sim, Margherita, and Taconet, Mac (2002). An Overview of the FOS Project:
Towards a Fishery Semantic Web. Internal project report, ISTC-CNR, Laboratory for Applied
Ontology, Rome, Italy.

Gangemi, Aldo, Guarino, Nicola, Masolo, Claudio, and Oltramari, Alessandro (2003a). Sweet-
ening WordNet with DOLCE. A1 Magazine, 24(3): 13-24.

Gangemi, Aldo and Mika, Peter (2003). Understanding the Semantic Web through Descrip-
tions and Situations. In DOA/CooplS/ODBASE ZOO3 Confederated International Conferences
DOA, CoopIS and ODBASE, Proceedings, LNCS. Springer.

Gangemi, Aldo, Mika, Peter, Sabou, Marta, and Oberle, Daniel (2003b). An Ontology of Services
and Service Descriptions. Technical report, Laboratory for Applied Ontology (ISTC-CNR),
Viale Marx, 15,001 37 Roma.

Gangemi, Aldo, Sagri, Maria-Teresa, and Tiscornia, Daniela (2004~). A Constructive Framework
for Legal Ontologies. Internal project report, EU 6FP METOKIS Project, Deliverable. http :
//metokis.salzburgresearch.at.

Genesereth, M. R. and Fikes, R. E. (1992). Knowledge Interchange Format Version 3.0 Reference
Manual. Report Logic 92-1, Logic Group, Stanford University, California, USA.

Genesereth, Michael R. and Nilsson, N. J. (1987). Logical Foundations ofArtificia1 Intelligence.
Morgan Kaufmann, Los Altos, California, USA.

Georgakopoulos, Dimitrios, Hornick, Mark F., and Sheth, Amit P. (1995). An Overview of
Workflow Management: From Process Modeling to Workflow Automation Infrastructure.
Distributed and Parallel Databases, 3(2): 1 19-1 53.

Gokhale, Aniruddha, Schmidt, Douglas C., Natarajan, Balachandran, Gray, Jeff, and Wang,
Nanbor (2004). Model Driven Middleware. In [Mahmoud, 20041, chapter 7, pages 163-187.

Gray, Jim and Reuter, Andreas (1993). Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann.

Grosof, B., Horrocks, I., Volz, R., and Decker, S. (2003). Description Logic Programs: Combining
Logic Programs with Description Logic. In Proceedings of the Twelfth International World
Wide Web Conference, WWW2003, Budapest, Hungary, 20-24 May 2003, pages 48-57. ACM.

Grosse-Rhode, Martin (2004). Semantic Integration of Heterogeneous Software Specifications.
Monographs in Theoretical Computer Science. Springer.

Gruber, Thomas R. (1995). Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal of Human Computer Studies, 43(5-6):907-928.

Griininger, Michael and Menzel, Christopher (2003). The Process Specification Language (PSL)
Theory and Applications. AI Magazine, 24(3):63-74.

260 SEMANTIC MANAGEMENT OF MIDDLEWARE

Guarino, N. (1998). Formal Ontology in Information Systems. In Guarino, N., editor, Formal
Ontology in Information Systems. Proceedings of FOIS'98, Trento, Italy, June 6-8, 1998,
pages 3-15, Amsterdam. IOS Press.

Guarino, N., Carrara, M., and Giaretta, P. (1994). Formalizing Ontological Commitment. In
Proceedings of National Conference on Artijicial Intelligence (AAAI-94), pages 560-567,
Seattle. Morgan Kaufmann.

Guarino, N. and Giaretta, P. (1995). Ontologies and Knowledge Bases: Towards aTerminological
Clarification. In Mars, N., editor, Towards Very Large Knowledge Bases: Knowledge Building
and Knowledge Sharing, pages 25-32, Amsterdam. IOS Press.

Guarino, Nicola and Welty, Christopher A. (2002). Evaluating Ontological Decisions with On-
toclean. Communications of the ACM, 45(2):61-65.

Gudgin, Martin, Hadley, Marc, Mendelsohn, Noah, Moreau, Jean-Jacques, and Nielsen, Hen-
rik Frystyk (2003). SOAP Version 1.2 Part 1 : Messaging Framework. http : //www . w3. org/
TR/soapi2-partl/. W3C Recommendation.

Guha, R. V. and Lenat, D.B. (1990). Cyc: A Mid-term Report. A1 Magazine, 11(3):32-59.
Haarslev, V. and Moeller, R. (2001). RACER System Description. In Proceedings of Automated

Reasoning, First International Joint Conference, IJCAR, volume 2083 of Lecture Notes in
Computer Science, pages 701-706. Springer.

Haase, Peter, Broekstra, Jeen, Ehrig, Marc, Menken, Maarten, Mika, Peter, Plechawski, Michal,
Pyszlak, Pawel, Schnizler, Bjom, Siebes, Ronny, Staab, Steffen, and Tempich, Christoph
(2004). Bibster - A Semantics-Based Bibliographic Peer-to-Peer System. In McIlraith,
Sheila A., Plexousakis, Dimitris, and van Harmelen, Frank, editors, Proceedings of the Third
International Semantic Web Conference, Hiroshima, Japan, 2004, volume 3298 of LNCS,
pages 122-136. Springer.

Handschuh, Siegfried, Staab, Steffen, and Volz, Raphael (2003). On Deep Annotation. In Pro-
ceedings of the Twelfth International World Wide Web Conference, WWW2003, Budapest,
Hungary, 20-24 May 2003, pages 43 1-438. ACM.

Hart, Lewis, Emery, Patrick, Colomb, Robert, Raymond, Kerry, Chang, Dan, Ye, Yiming,
Kendall, Elisa, and Dutra, Mark (2004). Usage Scenarios and Goals for Ontology Definition
Metamodel. In Zhou, Xiaofang, Su, Stanley, and Papazoglou, Mike P., editors, Proceedings
of the Third International Semantic Web Conference, volume 3306 of LNCS, pages 596-607.
Springer.

Hartmann, Jens and Sure, York (2004). An Infrastructure for Scalable, Reliable Semantic Portals.
IEEE Intelligent Systems, 19(3):58-65.

Hess, Andreas and Kushmerick, Nicholas (2003). Automatically Attaching Semantic Metadata
to Web Services. In Kambhampati, Subbarao and Knoblock, Craig A., editors, Proceedings
of IJCAI-03 Workshop on Information Integration on the Web (IIWeb-O3), August 9-10,2003,
Acapulco, Mexico, pages 1 1 1-1 16.

Horrocks, I. (1998). The FaCT system. In de Swart, Harrie C. M., editor, Automated Reasoning
with Analytic Tableau and Related Methods, International Conference, TABLEAUX '98,
Oisterwijk, The Netherlands, May 5-8, 1998, Proceedings, volume 1397 of Lecture Notes in
Computer Science. Springer.

Horrocks, Ian and Patel-Schneider, Peter F. (2001). The Generation of DAML+OIL. In Goble,
Carole A., McGuinness, Deborah L., Moller, Ralf, and Patel-Schneider, Peter F., editors,
Working Notes of the 2001 International Description Logics Workshop (DL-ZOO]), Stanford,
CA, USA, August 1-3, 2001, volume 49 of CEUR Workshop Proceedings.

Horrocks, Ian and Patel-Schneider, Peter F. (2004). Reducing OWL Entailment to Description
Logic Satisfiability. Journal of Web Semantics, 1 (4):345-357.

Houston, P. J. (1996). Introduction to DCE and Encina. Whitepaper, Transarc Corp.

REFERENCES 26 1

Howard, Randy and Kerschberg, Larry (2004). A Framework for Dynamic Semantic Web Ser-
vices Management. International Journal of Cooperative Information Systems, 13(4):441-
485.

IBM developerworks (2004a). New to SOA and Web services. http : //www- 106. ibm. com/
developerworks/webservices/newto/.

IBM developerworks (2004b). SOA and Web services - Standards. http: //www- 106. ibm.
com/developerworks/views/webservices/stadards.jsp.

Junginger, Markus Oliver and Lee, Yugyung (2004). Peer-to-Peer Middleware. In [Mahmoud,
20041, chapter 4, pages 81-107.

Kagal, Lalana, Finin, Timothy W., and Joshi, Anupam (2003). A Policy Based Approach to
Security for the Semantic Web. In Fensel, Dieter, Sycara, Katia P., and Mylopoulos, John,
editors, The Semantic Web - ISWC 2003, Second International Semantic Web Conference,
Sanibel Island, FL, USA, October 20-23, 2003, Proceedings, volume 2870 of Lecture Notes
in Computer Science, pages 402-41 8. Springer.

Kalbfleisch, C., Krupczak, C., Presuhn, R., and Saperia, J. (1999). RFC 2564: Application Man-
agement MIB. http: //www. ietf . org/rf ~2564. txt.

Kifer, Michael, Lausen, Georg, and Wu, James (1995). Logical Foundations of Object-Oriented
and Frame-Based Languages. Journal of the ACM, 42(1):741-843.

Lamparter, Steffen, Oberle, Daniel, and Eberhart, Andreas (2005). Approximating Service Utility
from Policies and Value Function Patterns. In 6th IEEE International Workshop on Policies
for Distributed Systems and Networks (POLICY 2005), 6-8 June 2005, Stockholm, Sweden,
pages 159-168. IEEE Computer Society.

Li, Lei and Horrocks, Ian (2003). A Software Framework for Matchmaking Based on Semantic
Web Technology. In Proceedings of the Twelfth International World Wide Web Conference,
WWW2003, Budapest, Hungary, 20-24 May 2003, pages 33 1-339. ACM.

Lindfors, Juha and Fleury, Marc (2002). JMX - Managing J2EE with Java Management Exten-
sions. Sams. The JBoss Group.

Lord, Phillip W., Bechhofer, Sean, Wilkinson, Mark D., Schiltz, Gary, Gessler, Damian, Hull,
Duncan, Goble, Carole A., and Stein, Lincoln (2004). Applying Semantic Web Services to
Bioinformatics: Experiences Gained, Lessons Learnt. In McIlraith, Sheila A., Plexousakis,
Dimitris, and van Harmelen, Frank, editors, The Semantic Web - ISWC 2004: Third Inter-
national Semantic Web Conference,Hiroshima, Japan, November 7-1 1, 2004. Proceedings,
volume 3298 of Lecture Notes in Computer Science, pages 350-364. Springer.

Maedche, Alexander, Motik, Boris, and Stojanovic, Ljiljana (2003). Managing Multiple and
Distributed Ontologies in the Semantic Web. VLDB Journal, 12(4):286-302.

Mahmoud, Q.H., editor (2004). Middleware for Communications. Wiley.
Mandell, Daniel J. and McIlraith, Sheila (2003). Adapting BPELAWS for the Semantic Web: The

Bottom-Up Approach to Web Service Interoperation. In Fensel, Dieter, Sycara, Katia P., and
Mylopoulos, John, editors, The Semantic Web - ISWC 2003, Second International Semantic
Web Conference, Sanibel Island, FL, USA, October 20-2.3, 2003, Proceedings, volume 2870
of Lecture Notes in Computer Science, pages 227-247. Springer.

Manola, Frank and Miller, Eric (2004). RDF Primer. W3C Recommendation.
http://www.w3.org/TR/rdf-primed.

Martin, David, Burstein, Mark, Hobbs, Jerry, Lassila, Ora, McDermott, Drew, McIlraith, Sheila,
Narayanan, Srini, Paolucci, Massimo, Parsia, Bijan, Payne, Terry, Sirin, Evren, Srinivasan,
Naveen, and Sycara, Katia (2004). OWL-S: Semantic Markup for Web Services. http:
//www.daml.org/services/owl-s/l.l/.

Masolo, Claudio, Borgo, Stefano, Gangemi, Aldo, Guarino, Nicola, and Oltramari, Alessan-
dro (2003). Ontology Library (final). Wonderweb Deliverable D18. http: //wonderweb.
semanticweb.org.

SEMANTIC MANAGEMENT OF MIDDLEWARE

Masolo, Claudio, Borgo, Stefano, Gangemi, Aldo, Guarino, Nicola, Oltramari, Alessandro, and
Schneider, Luc (2002). The WonderWeb Library of Foundational Ontologies. WonderWeb
Deliverable D17. http: //wonderweb. semanticweb. org.

Massonet, P. and van Lamsweerde, A. (1997). Analogical Reuse of Requirements Frameworks.
In 3rd IEEE International Symposium on Requirements Engineering (RE197), January 5-8,
1997, Annapolis, MD, USA, pages 26-39. IEEE Computer Society.

McGuinness, Deborah L. and van Harmelen, Frank (2004). Web Ontology Language (OWL)
Overview. http : //www . w3. org/TR/owl-f eatures/. W3C Recommendation.

McIlraith, Sheila A., Son, Tran Cao, and Zeng, Honglei (2001). Semantic Web Services. IEEE
Intelligent Systems, 16(2):46-53.

Mellor, Stephen J., Scott, Kendall, Uhl, Axel, and Weise, Dirk (2004). MDA Distilled. Addison-
Wesley Professional.

Mika, Peter, Oberle, Daniel, Gangemi, Aldo, and Sabou, Marta (2004a). Foundations for Service
Ontologies: Aligning OWL-S to DOLCE. In The Thirteenth International World Wide Web
Conference Proceedings, pages 563-572. ACM.

Mika, Peter, Sabou, Marta, Gangemi, Aldo, and Oberle, Daniel (2004b). Foundations for OWL-
S: Aligning OWL-S to DOLCE. In Payne, Terry, editor, Papers from 2004 AAAI Spring
Symposium - Semantic Web Services, pages 52-60. AAAI Press. SS-04-06.

Miller, George A., Beckwith, Richard, Fellbaum, Christiane, Gross, Derek, and Miller, Kather-
ine A. (1990). Introduction to WordNet: An On-line Lexical Database. International Journal
of Lexicography, 3(4):235-244.

Motik, Boris, Oberle, Daniel, Staab, Steffen, Studer, Rudi, and Volz, Raphael (2002). KAON
SERVER Architecture. WonderWeb Deliverable D5. http://wonderweb.semanticweb.org.

Motta, Enrico, Domingue, John, Cabraland, Liliana, and Gaspari, Mauro (2003). IRS-11: A
Framework and Infrastructure for Semantic Web Services. In The Semanticweb - ISWC 2003,
volume 2870 of LNCS, pages 306 - 3 18. Springer.

Narayanan, Srini and McIlraith, Sheila (2003). Analysis and Simulation of Web Services. Com-
puter Networks, 42(5):675-693.

Niles, I. and Pease, A. (2001). Origins of the IEEE Standard Upper Ontology. In Working Notes
of the IJCAI-2001 Workshop on the IEEE Standard Upper Ontology, Seattle, Washington,
August 6, 2001.

Noia, T. Di, Sciascio, E. Di, Donini, F. M., and Mongiello, M. (2003). Abductive Matchmaking
Using Description Logics. In Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI 2003), pages 337-342, Los Altos. Morgan Kaufmann.

Noy, N. F. and Klein, M. (2002). Ontology Evolution: Not the Same as Schema Evolution.
Technical Report SMI-2002-0926, Stanford University.

Noy, Natalya Fridman and Musen, Mark A. (2000). PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. In Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence, July 30 - August 3, 2000, Austin, Texas, USA, AAAI-2000 Technical Papers,
pages 450-455. AAAI Press I The MIT Press.

Oberle, Daniel (2004). Semantic Management of Middleware. In Proceedings of the 1st Interna-
tional Doctoral Symposium on Middleware, Toronto, Ontario, Canada, ACM International
Conference Proceeding Series, pages 299 - 303. ACM Press.

Oberle, Daniel, Berendt, Bettina, Hotho, Andreas, and Gonzalez, Jorge (2003a). Conceptual User
Tracking. In Ruiz, Ernestina Menasalvas, Segovia, Javier, and Szczepaniak, Piotr S., editors,
Advances in Weblntelligence, FirstlnternationalAtlantic Weblntelligence Conference, AWIC
2003, Madrid, Spain, May 5-6,2003, Proceedings, volume 2663 of Lecture Notes inArtificia1
Intelligence, pages 142-154. Springer.

REFERENCES

Oberle, Daniel, Eberhart, Andreas, Staab, Steffen, and Volz, Raphael (2004a). Developing and
Managing Software Components in an Ontology-based Application Server. In Jacobsen,
Hans-Arno, editor, Middleware 2004, ACM/IFIP/USENIX 5th International Middleware
Conference, Toronto, Ontario, Canada, volume 323 1 of LNCS, pages 459-478. Springer.

Oberle, Daniel, Hitzler, Pascal, Staab, Steffen, Eberhart, Andreas, Cimiano, Philipp, and Studer,
Rudi (2004b). The SmartWeb Foundational Ontology. SmartWeb Project Report.

Oberle, Daniel, Lamparter, Steffen, Eberhart, Andreas, and Staab, Steffen (2005a). Semantic
Management of Web Services. Technical report, University of Karlsruhe.

Oberle, Daniel, Lamparter, Steffen, Eberhart, Andreas, Staab, Steffen, Grimm, Stephan, Hitzler,
Pascal, Agarwal, Sudhir, and Studer, Rudi (2005b). Semantic Management of Web Services
using the Core Ontology of Services. Position Paper. W3C Workshop on Frameworks for
Semantics in Web Services.

Oberle, Daniel, Sabou, Marta, Richards, D., and Volz, Raphael (2003b). An Ontology for Seman-
tic Middleware: Extending DAML-S Beyond Web Services. In On The Move to Meaningful
Internet Systems 2003: OTM 2003Workshops, volume 2889 of Lecture Notes in Computer
Science, pages 28-29. Springer.

Oberle, Daniel, Sabou, Marta, and Richards, Debbie (2003~). An Ontology for Semantic Mid-
dleware: Extending DAML-S Beyond Web Services. Technical Report 426, University of
Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany.

Oberle, Daniel and Spyns, Peter (2004). The Knowledge Portal OntoWeb. In Staab, Steffen
and Studer, Rudi, editors, Handbook on Ontologies, International Handbooks on Information
Systems, chapter IV, pages 499-517. Springer.

Oberle, Daniel, Staab, Steffen, and Eberhart, Andreas (200%). Towards Semantic Middleware
for Web Application Development. IEEE Distributed Systems Online. http: //dsonline .
computer. org.

Oberle, Daniel, Staab, Steffen, Studer, Rudi, and Volz, Raphael (2003d). KAON SERVER
Demonstrator. WonderWeb Deliverable D7. http://wonderweb.semanticweb.org.

Oberle, Daniel, Staab, Steffen, Studer, Rudi, and Volz, Raphael (2005d). Supporting Applica-
tion Development in the Semantic Web. ACM Transactions on Internet Technology (TOIT),
5(2):359-389.

Oberle, Daniel, Staab, Steffen, and Volz, Raphael (2004~). An Application Server for the Se-
mantic Web. In The Thirteenth International World Wide Web Conference Alternate Track
Papers & Posters, pages 220-221. ACM.

Oberle, Daniel, Staab, Steffen, and Volz, Raphael (2005e). Three Dimensions of Knowledge
Representation in WonderWeb. Kiinstliche Intelligenz, 1 :3 1-35.

Oberle, Daniel, Volz, Raphael, Motik, Boris, and Staab, Steffen (2003e). KAON SERVER Pro-
totype. WonderWeb Deliverable D6. http://wonderweb.semanticweb.org.

Oberle, Daniel, Volz, Raphael, Motik, Boris, and Staab, Steffen (2004d). An Extensible Ontology
Software Environment. In Staab, Steffen and Studer, Rudi, editors, Handbook on Ontologies,
International Handbooks on Information Systems, chapter 111, pages 3 11-333. Springer.

Object Modelling Group (2002). IDL I Language Mapping Specification - Java to IDL. 1.2.
Paolucci, Massimo, Kawamura, Takahiro, Payne, Terry R., and Sycara, Katia P. (2002a). Import-

ing the Semantic Web in UDDI. In Bussler, Christoph, Hull, Richard, McIlraith, Sheila A.,
Orlowska, Maria E., Pernici, Barbara, and Yang, Jian, editors, Web Services, E-Business, and
the Semantic Web, CAiSE 2002 International Workshop, WES 2002, Toronto, Canada, May
27-28, 2002, Revised Papers, volume 2512 of Lecture Notes in Computer Science, pages
225-236. Springer.

Paolucci, Massimo, Kawamura, Takahiro, Payne, Terry R., and Sycara, Katia P. (2002b). Seman-
tic Matching of Web Services Capabilities. In Horrocks, Ian and Hendler, James A., editors,
The Semantic Web - ISWC 2002, First International Semantic Web Conference, Sardinia,

264 SEMANTIC MANAGEMENT OF MIDDLEWARE

Italy, June 9-12, 2002, Proceedings, volume 2342 of Lecture Notes in Computer Science,
pages 333-347. Springer.

Patil, A., Oundhakar, S., Sheth, A., and Verma, K. (2004). METEOR-S Web Service Annotation
Framework. In The 13th International World Wide Web Conference Proceedings, pages 553-
563. ACM Press.

Pease, A., Niles, I., and Li, J. (2002). Origins of the IEEE Standard Upper Ontology. In Working
Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, Edmonton, Canada,
July 28-August 1, 2002.

Pease, Adam (1998). Core Plan Representation. Object Model Focus Group.
Pepper, Steve and Schwab, Sylvia (2003). Curing the Web's Identity Crisis. Technical report,

Ontopia (h t t p : //www . ontop ia . net).
Peters, Randel J. and Oezsu, M. Tamer (1997). An Axiomatic Model of Dynamic Schema

Evolution in Objectbase Systems. ACM Transactions on Database Systems, 22(1):75-114.
Roman, Dumitru, Lausen, Holger, Keller, Uwe, de Bruijn, Jos, Bussler, Christoph, Domingue,

John, Fensel, Dieter, Kifer, Michael, Kopecky, Jacek, Lara, Ruben, Oren, Eyal, Polleres,
Axel, and Stollberg, Michael (2005). Web Service Modeling Ontology (WSMO). WSMO
Final Draft D2vl.1, SDK WSMO working group.

Russell, Stuart J. and Norvig, Peter (1995). Artijicial Intelligence: a Modern Approach. Prentice
Hall, Pacific Grove, CA, USA.

Sabou, Marta, Oberle, Daniel, and Richards, Debbie (2004). Enhancing Application Servers
with Semantics. In Krishnaswamy, Shonali, Loke, Seng W., and Yang, Jian, editors, 1st
Australian Workshop on Engineering Service-Oriented Systems (AWESOS 2004) Wednesday,
14April2004, Melbourne, Australia. In conjunction with the Australian Software Engineering
Conference (ASWEC), pages 7-15. Monash University, Australia.

Schmitt, P. H. (2001). Nichtklassische Logiken. Skriptum.
Schneider, Luc (2003). How to Build a Foundational Ontology: The Object-Centered High-level

Reference Ontology OCHRE. In Giinter, Andreas, Kruse, Rudolf, and Neumann, Bernd,
editors, KI 2003: Advances in Artijicial Intelligence, 26th Annual German Conference on AI,
KI 2003, Hamburg, Germany, September 15-18, 2003, Proceedings, volume 2821 of Lecture
Notes in Computer Science, pages 120-134. Springer.

Schoning, Uwe (2000). Logik for Informatiker. Spektrum.
Sheth, Amit and Ramakrishnan, Cartic (2003). Semantic (Web) Technology In Action: Ontology

Driven Information Systems for Search, Integration and Analysis. IEEE Data Engineering
Bulletin, Special issue on Making the Semantic Web Real, 26(4):40-48.

Sivashanmugam, K., Miller, J., Sheth, A., and Verma, K. (2004). Framework for Semantic Web
Process Composition. International Journal of Electronic Commerce (IJEC). Special Issue.

Smith, Barry (1996). Mereotopology: A Theory of Parts and Boundaries. Data & Knowledge
Engineering, 20(3):287-303.

Smith, Barry (2004). Beyond Concepts: Ontology as Reality Representation. In [Varzi and Vieu,
20041, pages 73-85.

Sowa, John. F. (2000). Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks Cole Publising Co., Pacific Grove, CA, USA.

Spyns, Peter, Oberle, Daniel, Volz, Raphael, Zheng, Jijuan, Jarrar, Mustafa, Sure, York, Studer,
Rudi, and Meersman, Robert (2002). OntoWeb - A Semantic Web Community Portal. In
Karagiannis, Dimitris and Reimer, Ulrich, editors, Practical Aspects of Knowledge Man-
agement, 4th International Conference, PAKM 2002, Vienna, Austria, December 2-3, 2002,
Proceedings, volume 2569 of Lecture Notes in Computer Science, pages 189-200. Springer.

Stell, John G. and West, Matthew (2004). A Four-Dimensionalist Mereotopology. In [Varzi and
Vieu, 20041, pages 261-273.

REFERENCES

Stojanovic, L., Maedche, A., Motik, B., and Stojanovic, N. (2002a). User-driven Ontology Evolu-
tion Management. In Meersman, Robert and Tari, Zahir, editors, On the Move to Meaningful
Internet Systems, 2002 - DOA/CooplS/ODBASE 2002 Confederated International Confer-
ences DOA, CooplS and ODBASE 2002 Irvine, California, USA, October 30 - November I,
2002, Proceedings, volume 25 19 of Lecture Notes in Computer Science. Springer.

Stojanovic, Ljiljana (2004). Methods and Tools for Ontology Evolution. PhD thesis, Univer-
sitat Karlsruhe, Institut fiir Angewandte Informatik und Formale Beschreibungsverfahren,
Germany.

Stojanovic, Nenad, Volz, Raphael, and Stojanovic, Ljiljana (2002b). A Reverse Engineering
Approach for Migrating Data-intensive Web Sites to the Semantic Web. In Musen, Mark A.,
Neumann, Bernd, and Studer, Rudi, editors, Intelligent Information Processing, IFIP 17th
World Computer Congress - TC12 Stream on Intelligent Information Processing, August 25-
30,2002, Montrial, Quibec, Canada, volume 221 of IFIP Conference Proceedings. Kluwer.

Stuckenschmidt, Heiner and Klein, Michel C. A. (2004). Structure-Based Partitioning of Large
Concept Hierarchies. In The Semantic Web - ISWC 2004: Third International Semantic Web
Conference,Hiroshima, Japan, November 7-1 1, 2004. Proceedings, volume 3298 of Lecture
Notes in Computer Science, pages 289-303. Springer.

Sturm, Rick and Bumpus, Winston (1998). Foundations of Application Management. Wiley.
Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., and Wenke, D. (2002). OntoEdit:

Collaborative ontology development for the Semantic Web. In Horrocks, Ian and Hendler,
James A., editors, The Semantic Web - ISWC 2002, First International Semantic Web Con-
ference, Sardinia, Italy, June 9-12, 2002, Proceedings, volume 2342 of Lecture Notes in
Computer Science. Springer.

Tai, Stefan (2004). Transaction Middleware. In [Mahmoud, 20041, chapter 3, pages 53-80.
Tai, Stefan, Khalaf, Rania, and Mikalsen, Thomas A. (2004a). Composition of Coordinated

Web Services. In Jacobsen, Hans-Arno, editor, Middleware 2004, ACM/IFIP/USENIX ln-
ternational Middleware Conference, Toronto, Canada, October 18-20, 2004, Proceedings,
volume 3231 of Lecture Notes in Computer Science, pages 294-3 10. Springer.

Tai, Stefan, Mikalsen, Thomas A., Wohlstadter, Eric, Desai, Nirmit, and Rouvellou, Isabelle
(2004b). Transaction Policies for Service-oriented Computing. Data & Knowledge Engi-
neering, 5 1(1):59-79.

Tetlow, Phil, Pan, Jeff, Oberle, Daniel, Wallace, Evan, Uschold, Mike, and Kendall, Elisa (2005).
Ontology Driven Architectures and Potential Uses of the Semantic Web in Software Engi-
neering. W3C Working Draft.

Tonti, Gianluca, Bradshaw, Jeffrey M., Jeffers, Renia, Montanan, Rebecca, Suri, Niranjan, and
Uszok, Andrzej (2003). Semantic Web Languages for Policy Representation and Reasoning:
A Comparison of KAoS, Rei, and Ponder. In Fensel, Dieter, Sycara, Katia P., and Mylopoulos,
John, editors, The Semantic Web - ISWC 2003, Second International Semantic Web Confer-
ence, Sanibel Island, FL, USA, October 20-23, 2003, Proceedings, volume 2870 of Lecture
Notes in Computer Science, pages 419-437. Springer.

Tosic, V., Ma, W., Pagurek, B., and Esfandiari, B. (2004). Web Service Offerings Infrastructure
(WSOI) - A Management Infrastructure for XML Web Services. In [Cho and Ejiri, 20041,
pages 8 17-830.

Trezzo, Jim and Mihic, Matt (2004). Web Services Metadata for the Java Platform. JSR 181,
Java Community Process. Early Review Draft Specification.

UDDI Coalition (2000). UDDI Technical White Paper. h t t p : //uddi . org.
Ullman, Jeffrey D. (1988). Principles of Database and Knowledge-base systems, volume 14 of

Principles of Comupter Science Series. Computer Science Press.
Uszok, Andrzej, Bradshaw, Jeffrey M., Jeffers, Renia, Tate, Austin, and Dalton, Jeff (2004).

Applying KAoS Services to Ensure Policy Compliance for Semantic Web Services Work-

SEMANTIC MANAGEMENT OF MIDDLEWARE

flow Composition and Enactment. In McIlraith, Sheila A., Plexousakis, Dimitris, and van
Harmelen, Frank, editors, The Semantic Web - ISWC 2004: Third International Semantic
Web Conference,Hiroshima, Japan, November 7-11, 2004. Proceedings, volume 3298 of
Lecture Notes in Computer Science, pages 425-440. Springer.

van der Aalst, Wil and van Hee, Kees (2002). Workjlow Management. MIT Press, 1st edition.
van Heijst, Gertjan (1995). The Role of Ontologies in Knowledge Engineering. PhD thesis,

Universiteit van Amsterdam.
Varzi, Achille C. and Vieu, Laure, editors (2004). Formal Ontology in Information Systems -

Proceedings of the Third International Conference (FOIS 2004). IOS Press.
Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., and Miller, J. (2005). ME-

TEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication and
 isc cove^ of Web Services. Journal of Information Technology and Management, 6(1): 17-
39.

Volz, Raphael, Oberle, Daniel, and Maedche, Alexander (2002). Towards a Modularized Seman-
tic Web. In Proceedings of the ECAI-02 Workshop on Ontologies and Semantic Interoper-
ability Lyon, July 22, 2002, volume 64 of CEUR Workshop Proceedings.

Volz, Raphael, Oberle, Daniel, Staab, Steffen, and Motik, Boris (2003a). KAON SERVER - A
Semantic Web Management System. In Alternate Track Proceedings of the Twelfth Inter-
national World Wide Web Conference, WWW2003, Budapest, Hungary, 20-24 May 2003.
ACM.

Volz, Raphael, Oberle, Daniel, Staab, Steffen, and Studer, Rudi (2003b). OntoBroker and On-
toEdit Adaptation. WonderWeb Deliverable D9. http://wonderweb.semanticweb.org.

Volz, Raphael, Oberle, Daniel, Staab, Steffen, and Studer, Rudi (2003~). OntoLiFT Prototype.
WonderWeb Deliverable Dl 1. http://wonderweb.semanticweb.org.

Volz, Raphael, Oberle, Daniel, Staab, Steffen, and Studer, Rudi (2003d). Triple Client. Wonder-
Web Deliverable D8. http://wonderweb.semanticweb.org.

Volz, Raphael, Oberle, Daniel, and Studer, Rudi (2003e). Implementing Views for Light-Weight
Web Ontologies. In Proceedings of the Seventh International Database Engineering and
Applications Symposium (IDEAS103), July 16 - 18, 2003, Hong Kong, SAR, pages 160-170.
IEEE Computer Society.

Voskob, Max (2004). UDDI Spec TC V4 Requirement - Taxonomy Support for Semantics.
OASIS. http : //www . oasis-open . org.

Walls, Craig and Richards, Norman (2003). XDoclet in Action. Manning Publications Co.
Welty, Christopher (1995). An Integrated Representation for Software Development and Discov-

ery. PhD thesis, Rensselaer Polytechnic Institute Computer Science Department.
Wolff, Frank, Oberle, Daniel, Lamparter, Steffen, and Staab, Steffen (2005). Economical Reflec-

tions on Different Options for the Management of Web Services. Technical report, University
of Duisburg-Essen, ICB Information Systems and Enterprise Modelling, Germany.

Zaremski, Amy Moormann and Wing, Jeannette M. (1997). Specification Matching of Software
Components. ACM Transactions on Software Engineering and Methodology, 6(4):333-369.

Index

Actualism, 51
Application management schemas, 224
Application ontology, 45
Application server, 18, 149
Application Server for the Semantic Web, 62,

183
Architecture, 164
Association, 35

B2B application integration, 18
BFO, 98

Cardinal question, 5, 21 1
Classification according to expressiveness, 45 - -
Classification according to purpose, 45
Classification according to specificity, 46
Classification of ontologies, 43 -

Component, 18, 129
Connector, 163
Functional component, 162,165,182,194
Proxy component, 162, 195
System component, 162, 195

Computational activitiy, 116
Computational object, 116
Concept, 35
Conceptual ambiguity, 87, 141
Conceptualization, 36
Connector, 163
Conventional middleware, 13
Core ontology, 46
Core Ontology of Software Components, 127,

245
Core Ontology of Web Services, 136,245
Core Software Ontology, 114,245

Data, 1 18
Deployment, 161
Deployment descriptors, 21, 153
Descriptions & Situations, 110,245
Descriptive ontology, 50

DOLCE, 99, 109,245
Domain ontology, 46

EAI, 16
Endurantism, 52
Enterprise application integration, 16
Enterprise application management, 222
Extrinsic properties, 52

Foundational ontology, 48,95
Framework, 19
Functional component, 162, 165, 182, 191, 194

Generic ontology, 46

Heavyweight ontology, 46

Inference engine, 150, 154, 162, 179
Initial ontology of software components, 83
Intended models, 39
Interceptor, 165, 182

JZEE, 20
JBoss, 172
JBossMX, 174
JMX, 21, 172

KAON, 174,200
API, 175
KAON SERVER, 177, 191
01-Modeller, 174, 183
Query, 177

KAON SERVER, 177, 191,245
Kernel, 161, 163, 178

Lightweight ontology, 46
Loose design, 89, 143

Main questions, 5

SEMANTIC MANAGEMENT OF MIDDLEWARE

Management of middleware, 4
Management ontology, 79, 108, 191
MBean, 172, 193
MDA, 226
Message brokers, 17
Message-oriented middleware, 15
METEOR-S, 230
Microkernel, 161, 163, 178
Middleware, l I, 12
Modal logic, 42
Model-driven architecture, 226
Model-driven deployment, 155
Modelling requirements, 66, 139
MOM, 15
Multiplicative ontology, 51

Narrow scope, 91, 144

Object brokers, 14
Object monitors, 15
Obtaining semantic descriptions, 153
OCHRE, 101
01-Modeller, 174, 183
Ontological choices, 50
Ontology, 34,35, 39

Actualism, 51
Application ontology, 45
Choices, 50
Classification, 43
Core, 46
Descriptive, 50
Domain, 46
Endurantism, 52
Extrinsic properties, 52
Foundational, 48.95
Generic, 46
Heavyweight, 46
Lightweight, 46
Management, 79, 108, 191
Multiplicative, 51
Perdurantism, 52
Possibilism, 51
Reductionist, 51
Revisionary, 50
Top-level, 46
Upper-level, 46

Ontology of Information Objects, 113,245
Ontology of Plans, 112,245
Ontology quality, 40
Ontology run time, 156
Ontology-based application server, 149

OpenCyc,Cyc, 103
OWL, 60
OWL-S, 81,229

Perdurantism, 52
Poor axiomatization, 88, 142
Possibilism, 5 1
Proxy component, 195

Quantified modal logic, 42
Questions, 5

RDF, 59
RDFS, 59
Reasoner, 150
Reductionist ontology, 5 1
Reference Ontology, 45
Remote procedure call, 14
Research questions, 5
Reverse engineering, 154
Revisionary ontology, 50
RPC, 14

Semantic Web, 58
Semantic Web Services, 228
Server core, 163
Service, 25
Service-oriented architectures, 25
Smartweb, 62
SOA, 25
Software, 117
Software building blocks, 13
Software component, 18, 129
SUO,SUMO, 104
Surrogate, 163
System component, 162, 195

Taxonomy, 35
TP monitors, 14
Transaction processing monitors, 14

Use cases, 65
Application server, 66
Web services, 70

Web service, 26, 137,227
Web service management, 223
WfMS, 17
Workflow management systems, 17
WS*, 28

